Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_6_a2, author = {A. I. Bufetov}, title = {Infinite determinantal measures and the ergodic decomposition of infinite {Pickrell~measures.~III.}}, journal = {Izvestiya. Mathematics }, pages = {1035--1056}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a2/} }
TY - JOUR AU - A. I. Bufetov TI - Infinite determinantal measures and the ergodic decomposition of infinite Pickrell~measures.~III. JO - Izvestiya. Mathematics PY - 2016 SP - 1035 EP - 1056 VL - 80 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a2/ LA - en ID - IM2_2016_80_6_a2 ER -
A. I. Bufetov. Infinite determinantal measures and the ergodic decomposition of infinite Pickrell~measures.~III.. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1035-1056. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a2/
[1] A. I. Bufetov, “Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures”, Izv. Math., 79:6 (2015), 1111–1156 | DOI | DOI | MR
[2] A. I. Bufetov, “Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. II. Convergence of infinite determinantal measures”, Izv. Math., 80:2 (2016), 299–315 | DOI | DOI | MR
[3] C. A. Tracy, H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309 | DOI | MR | Zbl
[4] A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123 | DOI | MR | Zbl
[5] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, R.I., 1959, ix+421 pp. | MR | Zbl | Zbl
[6] A. M. Vershik, “Description of invariant measures for the actions of some infinite-dimensional groups”, Soviet Math. Dokl., 15 (1974), 1396–1400 | MR | Zbl
[7] A. I. Bufetov, “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group”, Sb. Math., 205:2 (2014), 192–219 ; arXiv: 1105.0664 | DOI | DOI | MR | Zbl
[8] A. I. Bufetov, “Finiteness of ergodic unitarily invariant measures on spaces of infinite matrices”, Ann. Inst. Fourier (Grenoble), 64:3 (2014), 893–907 ; arXiv: 1108.2737 | DOI | MR | Zbl
[9] G. Olshanski, A. Vershik, “Ergodic unitarily invariant measures on the space of infinite Hermitian matrices”, Contemporary mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 137–175 | DOI | MR | Zbl
[10] J. Faraut, Analysis on Lie groups. An introduction, Cambridge Stud. Adv. Math., 110, Cambridge Univ. Press, Cambridge, 2008, x+302 pp. | DOI | MR | Zbl | Zbl
[11] M. Rabaoui, “A Bochner type theorem for inductive limits of Gelfand pairs”, Ann. Inst. Fourier (Grenoble), 58:5 (2008), 1551–1573 | DOI | MR | Zbl