Special Bohr--Sommerfeld Lagrangian submanifolds
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1257-1274

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new notion in symplectic geometry, that of speciality for Lagrangian submanifolds satisfying the Bohr–Sommerfeld condition. We show that it enables one to construct finite-dimensional moduli spaces of special Bohr–Sommerfeld Lagrangian submanifolds with respect to any ample line bundle on an algebraic variety with a Hodge metric regarded as the symplectic form. This construction can be used to study mirror symmetry.
Keywords: symplectic manifold, Lagrangian cycle, Bohr–Sommerfeld condition, prequantization data, algebraic variety, speciality condition.
@article{IM2_2016_80_6_a13,
     author = {N. A. Tyurin},
     title = {Special {Bohr--Sommerfeld} {Lagrangian} submanifolds},
     journal = {Izvestiya. Mathematics },
     pages = {1257--1274},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Special Bohr--Sommerfeld Lagrangian submanifolds
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1257
EP  - 1274
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/
LA  - en
ID  - IM2_2016_80_6_a13
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Special Bohr--Sommerfeld Lagrangian submanifolds
%J Izvestiya. Mathematics 
%D 2016
%P 1257-1274
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/
%G en
%F IM2_2016_80_6_a13
N. A. Tyurin. Special Bohr--Sommerfeld Lagrangian submanifolds. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1257-1274. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/