Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_6_a13, author = {N. A. Tyurin}, title = {Special {Bohr--Sommerfeld} {Lagrangian} submanifolds}, journal = {Izvestiya. Mathematics }, pages = {1257--1274}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/} }
N. A. Tyurin. Special Bohr--Sommerfeld Lagrangian submanifolds. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1257-1274. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/
[1] Yu. I. Manin, “Predislovie k tretemu tomu”: A. N. Tyurin, Sbornik izbrannykh trudov, V 3 tomakh, v. 3, Algebraicheskaya geometriya v topologii i fizike, In-t kompyuternykh tekhnologii, M.–Izhevsk, 2006, 9–14
[2] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of the international congress of mathematicians (Zürich, 1994), v. 1, Birkhäuser, Basel, 1995, 120–139 | MR | Zbl
[3] A. Tyurin, Geometric quantization and mirror symmetry, arXiv: math/9902027v1
[4] N. Hitchin, “Lectures on special Lagrangian submanifolds”, Winter school on mirror symmetry (Cambridge MA, 1999), AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI, 2001, 151–182 | MR | Zbl
[5] A. Strominger, Shing-Tung Yau, E. Zaslow, “Mirror symmetry is $T$-duality”, Winter school on mirror symmetry (Cambridge MA, 1999), AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI, 2001, 333–347 | MR | Zbl
[6] D. Auroux, “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91 | MR | Zbl
[7] N. A. Tyurin, “Special Lagrangian fibrations on the flag variety $F^3$”, Theoret. and Math. Phys., 167:2 (2011), 567–576 | DOI | DOI | MR | Zbl
[8] A. L. Gorodentsev, A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Math., 65:3 (2001), 437–467 | DOI | DOI | MR | Zbl
[9] N. A. Tyurin, “Geometric quantization and algebraic Lagrangian geometry”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 279–318 | DOI | MR
[10] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl
[11] R. Harvey, H. B. Lawson, Jr., “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl
[12] N. A. Tyurin, “Algebraic Lagrangian geometry: three geometric observations”, Izv. Math., 69:1 (2005), 177–190 | DOI | DOI | MR | Zbl