Special Bohr--Sommerfeld Lagrangian submanifolds
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1257-1274.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new notion in symplectic geometry, that of speciality for Lagrangian submanifolds satisfying the Bohr–Sommerfeld condition. We show that it enables one to construct finite-dimensional moduli spaces of special Bohr–Sommerfeld Lagrangian submanifolds with respect to any ample line bundle on an algebraic variety with a Hodge metric regarded as the symplectic form. This construction can be used to study mirror symmetry.
Keywords: symplectic manifold, Lagrangian cycle, Bohr–Sommerfeld condition, prequantization data, algebraic variety, speciality condition.
@article{IM2_2016_80_6_a13,
     author = {N. A. Tyurin},
     title = {Special {Bohr--Sommerfeld} {Lagrangian} submanifolds},
     journal = {Izvestiya. Mathematics },
     pages = {1257--1274},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Special Bohr--Sommerfeld Lagrangian submanifolds
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1257
EP  - 1274
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/
LA  - en
ID  - IM2_2016_80_6_a13
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Special Bohr--Sommerfeld Lagrangian submanifolds
%J Izvestiya. Mathematics 
%D 2016
%P 1257-1274
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/
%G en
%F IM2_2016_80_6_a13
N. A. Tyurin. Special Bohr--Sommerfeld Lagrangian submanifolds. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1257-1274. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a13/

[1] Yu. I. Manin, “Predislovie k tretemu tomu”: A. N. Tyurin, Sbornik izbrannykh trudov, V 3 tomakh, v. 3, Algebraicheskaya geometriya v topologii i fizike, In-t kompyuternykh tekhnologii, M.–Izhevsk, 2006, 9–14

[2] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of the international congress of mathematicians (Zürich, 1994), v. 1, Birkhäuser, Basel, 1995, 120–139 | MR | Zbl

[3] A. Tyurin, Geometric quantization and mirror symmetry, arXiv: math/9902027v1

[4] N. Hitchin, “Lectures on special Lagrangian submanifolds”, Winter school on mirror symmetry (Cambridge MA, 1999), AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI, 2001, 151–182 | MR | Zbl

[5] A. Strominger, Shing-Tung Yau, E. Zaslow, “Mirror symmetry is $T$-duality”, Winter school on mirror symmetry (Cambridge MA, 1999), AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI, 2001, 333–347 | MR | Zbl

[6] D. Auroux, “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91 | MR | Zbl

[7] N. A. Tyurin, “Special Lagrangian fibrations on the flag variety $F^3$”, Theoret. and Math. Phys., 167:2 (2011), 567–576 | DOI | DOI | MR | Zbl

[8] A. L. Gorodentsev, A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Math., 65:3 (2001), 437–467 | DOI | DOI | MR | Zbl

[9] N. A. Tyurin, “Geometric quantization and algebraic Lagrangian geometry”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 279–318 | DOI | MR

[10] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl

[11] R. Harvey, H. B. Lawson, Jr., “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl

[12] N. A. Tyurin, “Algebraic Lagrangian geometry: three geometric observations”, Izv. Math., 69:1 (2005), 177–190 | DOI | DOI | MR | Zbl