Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_6_a12, author = {J. V. Tikhonov and I. A. Sheipak}, title = {On the string equation with a~singular weight belonging to the space}, journal = {Izvestiya. Mathematics }, pages = {1242--1256}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a12/} }
TY - JOUR AU - J. V. Tikhonov AU - I. A. Sheipak TI - On the string equation with a~singular weight belonging to the space JO - Izvestiya. Mathematics PY - 2016 SP - 1242 EP - 1256 VL - 80 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a12/ LA - en ID - IM2_2016_80_6_a12 ER -
J. V. Tikhonov; I. A. Sheipak. On the string equation with a~singular weight belonging to the space. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1242-1256. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a12/
[1] M. G. Krein, “Opredelenie plotnosti neodnorodnoi simmetrichnoi struny po spektru ee chastot”, Dokl. AN SSSR, 76:3 (1951), 345–348 | MR | Zbl
[2] M. G. Krein, “Ob obratnykh zadachakh dlya neodnorodnoi struny”, Dokl. AN SSSR, 82:5 (1952), 669–672 | MR | Zbl
[3] M. G. Krein, “Ob odnom obobschenii issledovanii Stiltesa”, Dokl. AN SSSR, 87:6 (1952), 881–884 | MR | Zbl
[4] T. Uno, I. Hong, “Some consideration of asymptotic distribution of eigenvalues for the equation ${\frac{d^2 u}{dx^2}+\lambda\rho(x) u=0}$”, Japan. J. Math., 29 (1959), 152–164 | MR | Zbl
[5] J. Kigami, M. L. Lapidus, “Weyl's problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals”, Comm. Math. Phys., 158:1 (1993), 93–125 | DOI | MR | Zbl
[6] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl
[7] A. A. Vladimirov, I. A. Sheipak, “On the Neumann problem for the Sturm–Liouville equation with Cantor-type self-similar weight”, Funct. Anal. Appl., 47:4 (2013), 261–270 | DOI | DOI | MR | Zbl
[8] N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar weight of generalized Cantor type”, J. Math. Sci. (N. Y.), 210:6 (2015), 814–821 | DOI
[9] A. A. Vladimirov, I. A. Sheipak, “Self-similar functions in $L_2[0,1]$ and the Sturm–Liouville problem with a singular indefinite weight”, Sb. Math., 197:11 (2006), 1569–1586 | DOI | DOI | MR | Zbl
[10] A. A. Vladimirov, I. A. Sheipak, “Indefinite Sturm–Liouville problem for some classes of self-similar singular weights”, Proc. Steklov Inst. Math., 255 (2006), 82–91 | DOI | MR | Zbl
[11] A. I. Nazarov, “Logarithmic $L_2$-small ball asymptotics with respect to a self-similar measure for some Gaussian processes”, J. Math. Sci. (N. Y.), 133:3 (2006), 1314–1327 | DOI | MR | Zbl
[12] A. A. Vladimirov, I. A. Sheipak, “Asymptotics of the eigenvalues of the Sturm–Liouville problem with discrete self-similar weight”, Math. Notes, 88:5 (2010), 637–646 | DOI | DOI | MR | Zbl
[13] A. I. Nazarov, I. A. Sheipak, “Degenerate self-similar measures, spectral asymptotics and small deviations of Gaussian processes”, Bull. Lond. Math. Soc., 44:1 (2012), 12–24 | DOI | MR | Zbl
[14] A. A. Vladimirov, I. A. Sheipak, “On spectral periodicity for the Sturm–Liouville problem: Cantor type weight, Neumann and third type boundary conditions”, Concrete operators, spectral theory, operators in harmonic analysis and approximation, Oper. Theory Adv. Appl., 236, Birkhäuser/Springer, Basel, 2014, 509–516 | DOI | MR | Zbl
[15] A. A. Vladimirov, “Oscillation method in the spectral problem for a fourth order differential operator with a self-similar weight”, St. Petersburg Math. J., 27:2 (2016), 237–244 | DOI | Zbl
[16] U. Freiberg, “Refinement of the spectral asymptotics of generalized Krein Feller operators”, Forum Math., 23:2 (2011), 427–445 | DOI | MR | Zbl
[17] M. I. Neiman-Zade, A. A. Shkalikov, “Schrödinger operators with singular potentials from space of multiplicators”, Math. Notes, 66:5 (1999), 599–607 | DOI | DOI | MR | Zbl
[18] V. G. Maz'ya, I. E. Verbitsky, “Infinitesimal form boundedness and Trudinger's subordination for the Schrödinger operator”, Invent. Math., 162:1 (2005), 81–136 | DOI | MR | Zbl
[19] M. I. Neiman-zade, A. A. Shkalikov, “Strongly elliptic operators with singular coefficients”, Russ. J. Math. Phys., 13:1 (2006), 70–78 | DOI | MR | Zbl
[20] A. A. Shkalikov, J. Bak, “Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials”, Math. Notes, 71:5 (2002), 587–594 | DOI | DOI | MR | Zbl
[21] I. A. Sheipak, “On the construction and some properties of self-similar functions in the spaces $L_p[0,1]$”, Math. Notes, 81:6 (2007), 827–839 | DOI | DOI | MR | Zbl
[22] I. A. Sheipak, “Singular points of a self-similar function of spectral order zero: self-similar Stieltjes string”, Math. Notes, 88:2 (2010), 275–286 | DOI | DOI | MR | Zbl
[23] I. A. Sheipak, “Spectrum of a Jacobi matrix with exponentially growing matrix elements”, Moscow Univ. Math. Bull., 66:6 (2011), 244–249 | DOI | Zbl