On the string equation with a~singular weight belonging to the space
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1242-1256.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study spectral properties of the boundary-value problem \begin{gather*} -y''-\lambda\rho y=0, \\ y(0)=y(1)=0, \end{gather*} in the case when the weight $\rho$ belongs to the space $\mathcal M$ of multipliers from the space $\overset{\circ}{W}{}_2^1[0,1]$ to the dual space $\bigl(\overset{\circ}{W}{}_2^1[0,1]\bigr)'$. We obtain a criterion for the generalized derivative (in the sense of distributions) of a piecewise-constant affinely self-similar function to lie in $\mathcal M$. For general weights in this class we show that the spectrum of the problem is discrete and the eigenvalues grow exponentially. The nature of this growth is determined by the parameters of self-similarity. When the parameters of self-similarity reach the boundary of the set where $\rho\in\mathcal M$, the problem exhibits continuous spectrum.
Keywords: self-similar functions, string equation, spectral asymptotics.
Mots-clés : multipliers in Sobolev spaces
@article{IM2_2016_80_6_a12,
     author = {J. V. Tikhonov and I. A. Sheipak},
     title = {On the string equation with a~singular weight belonging to the space},
     journal = {Izvestiya. Mathematics },
     pages = {1242--1256},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a12/}
}
TY  - JOUR
AU  - J. V. Tikhonov
AU  - I. A. Sheipak
TI  - On the string equation with a~singular weight belonging to the space
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1242
EP  - 1256
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a12/
LA  - en
ID  - IM2_2016_80_6_a12
ER  - 
%0 Journal Article
%A J. V. Tikhonov
%A I. A. Sheipak
%T On the string equation with a~singular weight belonging to the space
%J Izvestiya. Mathematics 
%D 2016
%P 1242-1256
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a12/
%G en
%F IM2_2016_80_6_a12
J. V. Tikhonov; I. A. Sheipak. On the string equation with a~singular weight belonging to the space. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1242-1256. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a12/

[1] M. G. Krein, “Opredelenie plotnosti neodnorodnoi simmetrichnoi struny po spektru ee chastot”, Dokl. AN SSSR, 76:3 (1951), 345–348 | MR | Zbl

[2] M. G. Krein, “Ob obratnykh zadachakh dlya neodnorodnoi struny”, Dokl. AN SSSR, 82:5 (1952), 669–672 | MR | Zbl

[3] M. G. Krein, “Ob odnom obobschenii issledovanii Stiltesa”, Dokl. AN SSSR, 87:6 (1952), 881–884 | MR | Zbl

[4] T. Uno, I. Hong, “Some consideration of asymptotic distribution of eigenvalues for the equation ${\frac{d^2 u}{dx^2}+\lambda\rho(x) u=0}$”, Japan. J. Math., 29 (1959), 152–164 | MR | Zbl

[5] J. Kigami, M. L. Lapidus, “Weyl's problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals”, Comm. Math. Phys., 158:1 (1993), 93–125 | DOI | MR | Zbl

[6] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl

[7] A. A. Vladimirov, I. A. Sheipak, “On the Neumann problem for the Sturm–Liouville equation with Cantor-type self-similar weight”, Funct. Anal. Appl., 47:4 (2013), 261–270 | DOI | DOI | MR | Zbl

[8] N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar weight of generalized Cantor type”, J. Math. Sci. (N. Y.), 210:6 (2015), 814–821 | DOI

[9] A. A. Vladimirov, I. A. Sheipak, “Self-similar functions in $L_2[0,1]$ and the Sturm–Liouville problem with a singular indefinite weight”, Sb. Math., 197:11 (2006), 1569–1586 | DOI | DOI | MR | Zbl

[10] A. A. Vladimirov, I. A. Sheipak, “Indefinite Sturm–Liouville problem for some classes of self-similar singular weights”, Proc. Steklov Inst. Math., 255 (2006), 82–91 | DOI | MR | Zbl

[11] A. I. Nazarov, “Logarithmic $L_2$-small ball asymptotics with respect to a self-similar measure for some Gaussian processes”, J. Math. Sci. (N. Y.), 133:3 (2006), 1314–1327 | DOI | MR | Zbl

[12] A. A. Vladimirov, I. A. Sheipak, “Asymptotics of the eigenvalues of the Sturm–Liouville problem with discrete self-similar weight”, Math. Notes, 88:5 (2010), 637–646 | DOI | DOI | MR | Zbl

[13] A. I. Nazarov, I. A. Sheipak, “Degenerate self-similar measures, spectral asymptotics and small deviations of Gaussian processes”, Bull. Lond. Math. Soc., 44:1 (2012), 12–24 | DOI | MR | Zbl

[14] A. A. Vladimirov, I. A. Sheipak, “On spectral periodicity for the Sturm–Liouville problem: Cantor type weight, Neumann and third type boundary conditions”, Concrete operators, spectral theory, operators in harmonic analysis and approximation, Oper. Theory Adv. Appl., 236, Birkhäuser/Springer, Basel, 2014, 509–516 | DOI | MR | Zbl

[15] A. A. Vladimirov, “Oscillation method in the spectral problem for a fourth order differential operator with a self-similar weight”, St. Petersburg Math. J., 27:2 (2016), 237–244 | DOI | Zbl

[16] U. Freiberg, “Refinement of the spectral asymptotics of generalized Krein Feller operators”, Forum Math., 23:2 (2011), 427–445 | DOI | MR | Zbl

[17] M. I. Neiman-Zade, A. A. Shkalikov, “Schrödinger operators with singular potentials from space of multiplicators”, Math. Notes, 66:5 (1999), 599–607 | DOI | DOI | MR | Zbl

[18] V. G. Maz'ya, I. E. Verbitsky, “Infinitesimal form boundedness and Trudinger's subordination for the Schrödinger operator”, Invent. Math., 162:1 (2005), 81–136 | DOI | MR | Zbl

[19] M. I. Neiman-zade, A. A. Shkalikov, “Strongly elliptic operators with singular coefficients”, Russ. J. Math. Phys., 13:1 (2006), 70–78 | DOI | MR | Zbl

[20] A. A. Shkalikov, J. Bak, “Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials”, Math. Notes, 71:5 (2002), 587–594 | DOI | DOI | MR | Zbl

[21] I. A. Sheipak, “On the construction and some properties of self-similar functions in the spaces $L_p[0,1]$”, Math. Notes, 81:6 (2007), 827–839 | DOI | DOI | MR | Zbl

[22] I. A. Sheipak, “Singular points of a self-similar function of spectral order zero: self-similar Stieltjes string”, Math. Notes, 88:2 (2010), 275–286 | DOI | DOI | MR | Zbl

[23] I. A. Sheipak, “Spectrum of a Jacobi matrix with exponentially growing matrix elements”, Moscow Univ. Math. Bull., 66:6 (2011), 244–249 | DOI | Zbl