Simple right alternative superalgebras of Abelian type whose even part is a~field
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1231-1241.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study central simple unital right alternative superalgebras $B=\Gamma\oplus M$ of Abelian type of arbitrary dimension whose even part $\Gamma$ is a field. We prove that every such superalgebra $B=\Gamma\oplus M$, except for the superalgebra $B_{1|2}$, is a double, that is, the odd part can be represented in the form $M=\Gamma x$ for a suitable $x$. If the generating element $x$ commutes with the even part $\Gamma$, then $B$ is isomorphic to a twisted superalgebra of vector type $B(\Gamma,D,\gamma)$ introduced by Shestakov [1], [2]. But if $x$ commutes with the odd part $M$, then $B$ is isomorphic to a superalgebra $B(\Gamma, {}^*,R_\omega)$ introduced in [3] and called an $\omega$-double. We prove that if the ground field is algebraically closed, then $B$ is isomorphic to one of the superalgebras $B_{1|2}$, $B(\Gamma,D,\gamma)$, $B(\Gamma,{}^*,R_\omega)$.
Keywords: simple right alternative superalgebra, superalgebra of Abelian type.
@article{IM2_2016_80_6_a11,
     author = {S. V. Pchelintsev and O. V. Shashkov},
     title = {Simple right alternative superalgebras of {Abelian} type whose even part is a~field},
     journal = {Izvestiya. Mathematics },
     pages = {1231--1241},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a11/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - O. V. Shashkov
TI  - Simple right alternative superalgebras of Abelian type whose even part is a~field
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1231
EP  - 1241
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a11/
LA  - en
ID  - IM2_2016_80_6_a11
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A O. V. Shashkov
%T Simple right alternative superalgebras of Abelian type whose even part is a~field
%J Izvestiya. Mathematics 
%D 2016
%P 1231-1241
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a11/
%G en
%F IM2_2016_80_6_a11
S. V. Pchelintsev; O. V. Shashkov. Simple right alternative superalgebras of Abelian type whose even part is a~field. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1231-1241. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a11/

[1] I. P. Shestakov, “Prime alternative superalgebras of arbitrary characteristic”, Algebra Logic, 36:6 (1997), 389–412 | DOI | MR | Zbl

[2] I. P. Shestakov, “Simple $(-1,1)$-superalgebras”, Algebra Logic, 37:6 (1998), 411–422 | DOI | MR | Zbl

[3] S. V. Pchelintsev, O. V. Shashkov, “Simple finite-dimensional right-alternative superalgebras of Abelian type of characteristic zero”, Izv. Math., 79:3 (2015), 554–580 | DOI | DOI | MR | Zbl

[4] V. N. Zhelyabin, I. P. Shestakov, “Simple special Jordan superalgebras with associative even part”, Siberian Math. J., 45:5 (2004), 860–882 | DOI | MR | Zbl

[5] S. V. Pchelintsev, I. P. Shestakov, “Prime $(-1,1)$ and Jordan monsters and superalgebras of vector type”, J. Algebra, 423 (2015), 54–86 | DOI | MR | Zbl

[6] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Pure Appl. Math., 104, Academic Press, Inc., New York–London, 1982, xi+371 pp. | MR | MR | Zbl | Zbl

[7] E. Kleinfeld, “Right alternative rings”, Proc. Amer. Math. Soc., 4 (1953), 939–944 | DOI | MR | Zbl