Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1213-1230.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the dependence of upper bounds for the quantity $|P(n)|$ on certain properties of the behaviour of $|P(x)|$ in a neighbourhood of the point $x=n$. In particular, it is proved that, if $n$ is a point of local maximum of the quantity $|P(x)|$, where $|P(n)|>Cn^{1/4}$ and the maximum is broad ($|P(x)-P(n)|$, $B1$, if $|x-n|$), then $|P(n)|>Cn^{1/4+\varepsilon}$.
Keywords: circle problem and divisor problem, Voronoi–Hardy and Landau formulae, short intervals.
@article{IM2_2016_80_6_a10,
     author = {D. A. Popov},
     title = {Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals},
     journal = {Izvestiya. Mathematics },
     pages = {1213--1230},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a10/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1213
EP  - 1230
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a10/
LA  - en
ID  - IM2_2016_80_6_a10
ER  - 
%0 Journal Article
%A D. A. Popov
%T Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals
%J Izvestiya. Mathematics 
%D 2016
%P 1213-1230
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a10/
%G en
%F IM2_2016_80_6_a10
D. A. Popov. Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1213-1230. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a10/

[1] Loo-keng Hua, Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie, Enzyklopädie Math. Wiss., I, B. G. Teubner Verlagsgesellschaft, Leipzig, 1959, 123 pp. | MR | MR | Zbl | Zbl

[2] E. Krätzel, Lattice points, Math. Appl. (East European Ser.), 33, Kluwer Acad. Publ., Dordrecht, 1988, 320 pp. | MR | Zbl

[3] H. Iwaniec, C. J. Mozzochi, “On divisor and circle problems”, J. Number Theory, 29:1 (1988), 60–93 | DOI | MR | Zbl

[4] M. N. Huxley, “Exponential sums and lattice points. II”, Proc. London Math. Soc. (3), 66:2 (1993), 279–301 | DOI | MR | Zbl

[5] M. N. Huxley, “Exponential sums and lattice points. III”, Proc. London Math. Soc. (3), 87:3 (2003), 591–609 | DOI | MR | Zbl

[6] K. S. Gangadharan, A. E. Ingham, “Two classical lattice point problems”, Proc. Cambridge Philos. Soc., 57:4 (1961), 699–721 | DOI | MR | Zbl

[7] J. L. Hafner, “New omega theorems for two classical lattice point problems”, Invent. Math., 63:2 (1981), 181–186 | DOI | MR | Zbl

[8] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951, vi+346 pp. | MR | Zbl

[9] A. Ivić, The Rieman zeta-function. The theory of the Riemann zeta-function with applications, John Wiley Sons, Inc., New York, 1985, xvi+517 pp. | MR | Zbl

[10] Kvantovyi khaos, ed. Ya. G. Sinai, RKhD, M.–Izhevsk, 2008, 384 pp.

[11] W. Luo, R. Sarnak, “Number variance for arithmetic hyperbolic surfaces”, Comm. Math. Phys., 161:2 (1994), 419–432 | DOI | MR | Zbl

[12] M. Jutila, “On the divisor problem for short intervals”, Ann. Univ. Turku. Ser. A I, 1984, no. 186, 23–30 | MR | Zbl

[13] A. Ivić, Wenguang Zhai, “On the Dirichlet divisor problem in short intervals”, Ramanujan J., 33:3 (2014), 447–465 ; arXiv: 1209.0872 | DOI | MR | Zbl

[14] A. Ivić, “On the divisor function and the Rieman zeta-function in short intervals”, Ramanujan J., 19:2 (2009), 207–224 | DOI | MR | Zbl

[15] A. Ivić, P. Sargos, “On the higher moments of the error term in the divisor problem”, Illinois J. Math., 51:2 (2007), 353–377 | MR | Zbl

[16] A. Ivić, “Large values of certain number-theoretic error therms”, Acta Arith., 56:2 (1990), 135–159 | MR | Zbl

[17] D. R. Heath-Brown, K. Tsang, “Sign changes of $E(T)$, $\Delta(x)$, and $P(X)$”, J. Number Theory, 49:1 (1994), 73–83 | DOI | MR | Zbl

[18] K. Prachar, Primzahlverteilung, Grundlehren Math. Wiss., 91, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp. | MR | MR | Zbl | Zbl

[19] B. A. Venkov, Elementary number theory, Wolters-Noordhoff Publishing, Groningen, 1970, ix+249 pp. | MR | Zbl

[20] E. Landau, “Über die Gitterpunkte in einem Kreise”, Math. Z., 5:3 (1919), 319–320 | DOI | MR | Zbl

[21] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl