Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 958-993

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected compact Lie group acting on a manifold $M$ and let $D$ be a transversally elliptic operator on $M$. The multiplicity of the index of $D$ is a function on the set $\widehat G$ of irreducible representations of $G$. Let $T$ be a maximal torus of $G$ with Lie algebra $\mathfrak t$. We construct a finite number of piecewise polynomial functions on $\mathfrak t^*$, and give a formula for the multiplicity in terms of these functions. The main new concept is the formal equivariant $\widehat A$ class.
Keywords: equivariant $K$-theory, splines.
Mots-clés : equivariant index
@article{IM2_2016_80_5_a7,
     author = {M. Vergne},
     title = {Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators},
     journal = {Izvestiya. Mathematics },
     pages = {958--993},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a7/}
}
TY  - JOUR
AU  - M. Vergne
TI  - Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 958
EP  - 993
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a7/
LA  - en
ID  - IM2_2016_80_5_a7
ER  - 
%0 Journal Article
%A M. Vergne
%T Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators
%J Izvestiya. Mathematics 
%D 2016
%P 958-993
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a7/
%G en
%F IM2_2016_80_5_a7
M. Vergne. Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 958-993. http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a7/