Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 958-993.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected compact Lie group acting on a manifold $M$ and let $D$ be a transversally elliptic operator on $M$. The multiplicity of the index of $D$ is a function on the set $\widehat G$ of irreducible representations of $G$. Let $T$ be a maximal torus of $G$ with Lie algebra $\mathfrak t$. We construct a finite number of piecewise polynomial functions on $\mathfrak t^*$, and give a formula for the multiplicity in terms of these functions. The main new concept is the formal equivariant $\widehat A$ class.
Keywords: equivariant $K$-theory, splines.
Mots-clés : equivariant index
@article{IM2_2016_80_5_a7,
     author = {M. Vergne},
     title = {Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators},
     journal = {Izvestiya. Mathematics },
     pages = {958--993},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a7/}
}
TY  - JOUR
AU  - M. Vergne
TI  - Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 958
EP  - 993
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a7/
LA  - en
ID  - IM2_2016_80_5_a7
ER  - 
%0 Journal Article
%A M. Vergne
%T Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators
%J Izvestiya. Mathematics 
%D 2016
%P 958-993
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a7/
%G en
%F IM2_2016_80_5_a7
M. Vergne. Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 958-993. http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a7/

[1] M. F. Atiyah, Elliptic operators and compact groups, Lecture Notes in Math., 401, Springer-Verlag, Berlin–New York, 1974, ii+93 pp. | DOI | MR | Zbl

[2] M. F. Atiyah, G. B. Segal, “The index of elliptic operators. II”, Ann. of Math. (2), 87:3 (1968), 531–545 | DOI | MR | MR | Zbl

[3] M. F. Atiyah, I. M. Singer, “The index of elliptic operators. I”, Ann. of Math. (2), 87:3 (1968), 484–530 | DOI | MR | MR | Zbl

[4] N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators, Grundlehren Math. Wiss., 298, Springer, Berlin, 1992, viii+369 pp. | MR | Zbl

[5] N. Berline, M. Vergne, “Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante”, C. R. Acad. Sci. Paris Sér. I Math., 295:9 (1982), 539–541 | MR | Zbl

[6] N. Berline, M. Vergne, “The Chern character of a transversally elliptic symbol and the equivariant index”, Invent. Math., 124:1-3 (1996), 11–49 | DOI | MR | Zbl

[7] N. Berline, M. Vergne, “L'indice équivariant des opérateurs transversalement elliptiques”, Invent. Math., 124:1-3 (1996), 51–101 | DOI | MR | Zbl

[8] M. Brion, M. Vergne, “Residues formulae, vector partition functions and lattice points in rational polytopes”, J. Amer. Math. Soc., 10:4 (1997), 797–833 | DOI | MR | Zbl

[9] W. Dahmen, C. A. Micchelli, “On the solution of certain systems of partial difference equations and linear dependence of translates of box splines”, Trans. Amer. Math. Soc., 292:1 (1985), 305–320 | DOI | MR | Zbl

[10] C. De Boor, K. Höllig, S. Riemenschneider, Box splines, Appl. Math. Sci., 98, Springer-Verlag, New York, 1993, xviii+200 pp. | DOI | MR | Zbl

[11] C. De Concini, C. Procesi, M. Vergne, “Vector partition functions and index of transversally elliptic operators”, Transform. Groups, 15:4 (2010), 775–811 | DOI | MR | Zbl

[12] C. De Concini, C. Procesi, M. Vergne, “Box splines and the equivariant index theorem”, J. Inst. Math. Jussieu, 12:3 (2013), 503–544 ; arXiv: 1012.1049 | DOI | MR | Zbl

[13] C. De Concini, C. Procesi, M. Vergne, “The infinitesimal index”, J. Inst. Math. Jussieu, 12:2 (2013), 297–334 ; arXiv: 1003.3525 | DOI | MR | Zbl

[14] M. Duflo, Sh. Kumar, M. Vergne, Sur la cohomologie équivariante des variétés différentiables, Astérisque, 215, Soc. Math. France, Paris, 1993, 205 pp. | Zbl

[15] V. Guillemin, “Reduced phase spaces and Riemann–Roch”, Lie theory and geometry, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, 305–334 | DOI | MR | Zbl

[16] V. W. Guillemin, S. Sternberg, Supersymmetry and equivariant De Rham theory, With an appendix containing two reprints by H. Cartan, Mathematics Past and Present, Springer-Verlag, Berlin, 1999, xxiv+228 pp. | DOI | MR | Zbl

[17] G. J. Heckman, “Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups”, Invent. Math., 67:2 (1982), 333–356 | DOI | MR | Zbl

[18] L. C. Jeffrey, F. C. Kirwan, “Localization and the quantization conjecture”, Topology, 36:3 (1997), 647–693 | DOI | MR | Zbl

[19] E. Meinrenken, R. Sjamaar, “Singular reduction and quantization”, Topology, 38:4 (1999), 699–762 | DOI | MR | Zbl

[20] P.-E. Paradan, “On the structure of $K_G(T_G M)$”, arXiv: 1209.3852

[21] P.-E. Paradan, M. Vergne, Multiplicities of equivariant $\operatorname{Spin}^c$ Dirac operators, 2014, arXiv: 1411.7772v1

[22] P.-E. Paradan, M. Vergne, “Witten non abelian localization for equivariant K-theory, and the $[Q,R]=0$ theorem”, 2015, arXiv: 1504.07502

[23] I. J. Schoenberg, “Cardinal interpolation and splines functions. II. Interpolation of data of power growth”, J. Approx. Theory, 6:4 (1972), 404–420 | DOI | MR | Zbl

[24] A. Szenes, M. Vergne, “Residue formulae for vector partitions and Euler–MacLaurin sums”, Proceedings of FPSAC-01 (Scottsdale, AZ, 2001), Adv. in Appl. Math., 30:1-2 (2003), 295–342 | DOI | MR | Zbl

[25] M. Vergne, Poisson summation formula and Box splines, arXiv: 1302.6599

[26] E. Witten, “Supersymmetry and Morse theory”, J. Differential Geom., 17:4 (1982), 661–692 | MR | Zbl

[27] E. Witten, “Two dimensional gauge theories revisited”, J. Geom. Phys., 9:4 (1992), 303–368 | DOI | MR | Zbl