Threefold extremal contractions of type (IIA).~I
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 884-909
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(X,C)$ be a germ of a threefold $X$ with terminal singularities along an irreducible reduced complete curve $C$ with a contraction $f\colon(X,C)\to(Z,o)$ such that $C=f^{-1}(o)_{\mathrm{red}}$ and $-K_X$ is ample. Assume that $(X,C)$ contains a point of type $(\mathrm{IIA})$ and that a general member $H\in|\mathscr O_X|$ containing $C$ is normal. We classify such germs in terms of $H$.
Keywords:
extremal contraction, threefold, extremal curve germ, terminal singularity, sheaf.
@article{IM2_2016_80_5_a4,
author = {S. Mori and Yu. G. Prokhorov},
title = {Threefold extremal contractions of type {(IIA).~I}},
journal = {Izvestiya. Mathematics },
pages = {884--909},
publisher = {mathdoc},
volume = {80},
number = {5},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/}
}
S. Mori; Yu. G. Prokhorov. Threefold extremal contractions of type (IIA).~I. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 884-909. http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/