Threefold extremal contractions of type (IIA).~I
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 884-909.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,C)$ be a germ of a threefold $X$ with terminal singularities along an irreducible reduced complete curve $C$ with a contraction $f\colon(X,C)\to(Z,o)$ such that $C=f^{-1}(o)_{\mathrm{red}}$ and $-K_X$ is ample. Assume that $(X,C)$ contains a point of type $(\mathrm{IIA})$ and that a general member $H\in|\mathscr O_X|$ containing $C$ is normal. We classify such germs in terms of $H$.
Keywords: extremal contraction, threefold, extremal curve germ, terminal singularity, sheaf.
@article{IM2_2016_80_5_a4,
     author = {S. Mori and Yu. G. Prokhorov},
     title = {Threefold extremal contractions of type {(IIA).~I}},
     journal = {Izvestiya. Mathematics },
     pages = {884--909},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/}
}
TY  - JOUR
AU  - S. Mori
AU  - Yu. G. Prokhorov
TI  - Threefold extremal contractions of type (IIA).~I
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 884
EP  - 909
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/
LA  - en
ID  - IM2_2016_80_5_a4
ER  - 
%0 Journal Article
%A S. Mori
%A Yu. G. Prokhorov
%T Threefold extremal contractions of type (IIA).~I
%J Izvestiya. Mathematics 
%D 2016
%P 884-909
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/
%G en
%F IM2_2016_80_5_a4
S. Mori; Yu. G. Prokhorov. Threefold extremal contractions of type (IIA).~I. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 884-909. http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/

[3] J. Kollár, S. Mori, “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703 | DOI | MR | Zbl

[4] Flips and abundance for algebraic threefolds (Univ. of Utah, Salt Lake City, 1991), Astérisque, 211, ed. J. Kollár, Soc. Math. France, Paris, 1992, 258 pp. | MR | Zbl

[5] S. Mori, “Flip theorem and the existence of minimal models for {$3$}-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[6] S. Mori, Y. Prokhorov, “On $\mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369 | DOI | MR | Zbl

[7] S. Mori, Y. Prokhorov, “On $\mathbb {Q}$-conic bundles. III”, Publ. Res. Inst. Math. Sci., 45:3 (2009), 787–810 | DOI | MR | Zbl

[8] S. Mori, Y. Prokhorov, “Threefold extremal contractions of type (IA)”, Kyoto J. Math., 51:2 (2011), 393–438 | DOI | MR | Zbl

[9] S. Mori, Y. Prokhorov, “3-fold extremal contractions of types (IC) and (IIB)”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 231–252 | DOI | MR | Zbl

[10] M. Reid, “Young person's guide to canonical singularities”, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 345–414 | MR | Zbl