Threefold extremal contractions of type (IIA).~I
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 884-909

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,C)$ be a germ of a threefold $X$ with terminal singularities along an irreducible reduced complete curve $C$ with a contraction $f\colon(X,C)\to(Z,o)$ such that $C=f^{-1}(o)_{\mathrm{red}}$ and $-K_X$ is ample. Assume that $(X,C)$ contains a point of type $(\mathrm{IIA})$ and that a general member $H\in|\mathscr O_X|$ containing $C$ is normal. We classify such germs in terms of $H$.
Keywords: extremal contraction, threefold, extremal curve germ, terminal singularity, sheaf.
@article{IM2_2016_80_5_a4,
     author = {S. Mori and Yu. G. Prokhorov},
     title = {Threefold extremal contractions of type {(IIA).~I}},
     journal = {Izvestiya. Mathematics },
     pages = {884--909},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/}
}
TY  - JOUR
AU  - S. Mori
AU  - Yu. G. Prokhorov
TI  - Threefold extremal contractions of type (IIA).~I
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 884
EP  - 909
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/
LA  - en
ID  - IM2_2016_80_5_a4
ER  - 
%0 Journal Article
%A S. Mori
%A Yu. G. Prokhorov
%T Threefold extremal contractions of type (IIA).~I
%J Izvestiya. Mathematics 
%D 2016
%P 884-909
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/
%G en
%F IM2_2016_80_5_a4
S. Mori; Yu. G. Prokhorov. Threefold extremal contractions of type (IIA).~I. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 884-909. http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a4/