The category $\mathcal{MF}$ in the semistable case
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 849-868

Voir la notice de l'article provenant de la source Math-Net.Ru

The categories $\mathcal{MF}$ over discrete valuation rings were introduced by J. M. Fontaine as crystalline objects one might hope to associate with Galois representations. The definition was later extended to smooth base-schemes. Here we give a further extension to semistable schemes. As an application we show that certain Shimura varieties have semistable models.
Keywords: Fontaine theory, Galois representations.
@article{IM2_2016_80_5_a2,
     author = {G. Faltings},
     title = {The category $\mathcal{MF}$ in the semistable case},
     journal = {Izvestiya. Mathematics },
     pages = {849--868},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a2/}
}
TY  - JOUR
AU  - G. Faltings
TI  - The category $\mathcal{MF}$ in the semistable case
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 849
EP  - 868
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a2/
LA  - en
ID  - IM2_2016_80_5_a2
ER  - 
%0 Journal Article
%A G. Faltings
%T The category $\mathcal{MF}$ in the semistable case
%J Izvestiya. Mathematics 
%D 2016
%P 849-868
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a2/
%G en
%F IM2_2016_80_5_a2
G. Faltings. The category $\mathcal{MF}$ in the semistable case. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 849-868. http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a2/