Feynman amplitudes and limits of heights
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 813-848

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.
Keywords: low-energy limit, asymptotics of the archimedean height pairing, Symanzik polynomials, nilpotent orbit theorem, biextension mixed Hodge structures, regularized Green functions.
Mots-clés : Feynman amplitudes
@article{IM2_2016_80_5_a1,
     author = {O. Amini and S. J. Bloch and J. I. Burgos Gil and J. Fres\'an},
     title = {Feynman amplitudes and limits of heights},
     journal = {Izvestiya. Mathematics },
     pages = {813--848},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a1/}
}
TY  - JOUR
AU  - O. Amini
AU  - S. J. Bloch
AU  - J. I. Burgos Gil
AU  - J. Fresán
TI  - Feynman amplitudes and limits of heights
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 813
EP  - 848
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a1/
LA  - en
ID  - IM2_2016_80_5_a1
ER  - 
%0 Journal Article
%A O. Amini
%A S. J. Bloch
%A J. I. Burgos Gil
%A J. Fresán
%T Feynman amplitudes and limits of heights
%J Izvestiya. Mathematics 
%D 2016
%P 813-848
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a1/
%G en
%F IM2_2016_80_5_a1
O. Amini; S. J. Bloch; J. I. Burgos Gil; J. Fresán. Feynman amplitudes and limits of heights. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 813-848. http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a1/