Feynman amplitudes and limits of heights
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 813-848.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.
Keywords: low-energy limit, asymptotics of the archimedean height pairing, Symanzik polynomials, nilpotent orbit theorem, biextension mixed Hodge structures, regularized Green functions.
Mots-clés : Feynman amplitudes
@article{IM2_2016_80_5_a1,
     author = {O. Amini and S. J. Bloch and J. I. Burgos Gil and J. Fres\'an},
     title = {Feynman amplitudes and limits of heights},
     journal = {Izvestiya. Mathematics },
     pages = {813--848},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a1/}
}
TY  - JOUR
AU  - O. Amini
AU  - S. J. Bloch
AU  - J. I. Burgos Gil
AU  - J. Fresán
TI  - Feynman amplitudes and limits of heights
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 813
EP  - 848
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a1/
LA  - en
ID  - IM2_2016_80_5_a1
ER  - 
%0 Journal Article
%A O. Amini
%A S. J. Bloch
%A J. I. Burgos Gil
%A J. Fresán
%T Feynman amplitudes and limits of heights
%J Izvestiya. Mathematics 
%D 2016
%P 813-848
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a1/
%G en
%F IM2_2016_80_5_a1
O. Amini; S. J. Bloch; J. I. Burgos Gil; J. Fresán. Feynman amplitudes and limits of heights. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 813-848. http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a1/

[32] O. Amini, The exchange graph and variations of the ratio of the two Symanzik polynomials, arXiv: 1609.0589

[33] M. Asakura, “Motives and algebraic de Rham cohomology”, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), CRM Proc. Lecture Notes, 24, Amer. Math. Soc., Providence, RI, 2000, 133–154 | MR | Zbl

[34] C. Birkenhake, H. Lange, Complex abelian varieties, Grundlehren Math. Wiss., 302, 2nd ed., Springer-Verlag, Berlin, 2004, xii+635 pp. | DOI | MR | Zbl

[35] J. I. Burgos Gil, D. Holmes, R. de Jong, Singularities of the biextension metric for families of abelian varieties, arXiv: 1604.00686

[36] J. A. Carlson, E. H. Cattani, A. G. Kaplan, “Mixed Hodge structures and compactifications of Siegel's space (preliminary report)”, Journées de géometrie algébrique d'Angers (Angers, 1979), Sijthoff Nordhoff, Alphen aan den Rijn–Germantown, MD, 1980, 77–105 | MR | Zbl

[37] E. H. Cattani, “Mixed Hodge structures, compactifications and monodromy weight filtration”, Topics in transcendental algebraic geometry (Princeton, NJ, 1981/1982), Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984, 75–100 | MR | Zbl

[38] E. Cattani, A. Kaplan, W. Schmid, “Degeneration of Hodge structures”, Ann. of Math. (2), 123:3 (1986), 457–535 | DOI | MR | Zbl

[39] S. Chaiken, “A combinatorial proof of the all minors matrix tree theorem”, SIAM J. Algebraic Discrete Methods, 3:3 (1982), 319–329 | DOI | MR | Zbl

[40] P. Deligne, D. Mumford, “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36:1 (1969), 75–109 | DOI | MR | Zbl

[41] R. J. Eden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne, The analytic $S$-matrix, Cambridge Univ. Press, London–New York–Ibadan, 1966, viii+287 pp. | MR | Zbl

[42] R. Hain, “Biextensions and heights associated to curves of odd genus”, Duke Math. J., 61:3 (1990), 859–898 | DOI | MR | Zbl

[43] Dzh. Kharris, Ya. Morrison, Moduli krivykh, Mir, M., 2004, 448 pp.; J. Harris, I. Morrison, Moduli of curves, Grad. Texts in Math., 187, Springer-Verlag, New York, 1998, xiv+366 pp. | DOI | MR | Zbl

[44] R. Hartshorne, Deformation theory, Grad. Texts in Math., 257, Springer, New York, 2010, viii+234 pp. | DOI | MR | Zbl

[45] T. Hayama, G. Pearlstein, “Asymptotics of degenerations of mixed Hodge structures”, Adv. Math., 273 (2015), 380–420 | DOI | MR | Zbl

[46] J. W. Hoffman, The Hodge theory of stable curves, Mem. Amer. Math. Soc., 51, no. 308, Amer. Math. Soc., Providence, RI, 1984, iv+91 pp. | DOI | MR | Zbl

[47] D. Holmes, R. de Jong, “Asymptotics of the Néron height pairing”, Math. Res. Lett., 22:5 (2015), 1337–1371 | DOI

[48] C. Itzykson, J.-B. Zuber, Quantum field theory, Internat. Ser. Pure Appl. Phys., McGraw-Hill International Book Co., New York, 1980, xxii+705 pp. | MR

[49] R. de Jong, “Faltings delta-invariant and semistable degeneration”, arXiv: 1511.06567

[50] K. Kato, C. Nakayama, S. Usui, “$\mathrm{SL}(2)$-orbit theorem for degeneration of mixed Hodge structure”, J. Algebraic Geom., 17:3 (2008), 401–479 | DOI | MR | Zbl

[51] K. Kato, S. Usui, Classifying spaces of degenerating polarized Hodge structures, Ann. of Math. Stud., 169, Princeton Univ. Press, Princeton, NJ, 2009, ix+336 pp. | MR | Zbl

[52] G. Kirchhoff, “Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird”, Annalen der Physik, 148:12 (1847), 497–508 | DOI

[53] S. Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988, x+187 pp. | DOI | MR | Zbl

[54] D. A. Lear, Extensions of normal functions and asymptotics of the height pairing, Thesis (Ph. D.), Univ. of Washington, 1990, 90 pp. | MR

[55] D. R. Morrison, “The Clemens–Schmid exact sequence and applications”, Topics in transcendental algebraic geometry, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984, 101–119 | MR | Zbl

[56] G. J. Pearlstein, “Degenerations of mixed Hodge structure”, Duke Math. J., 110:2 (2001), 217–251 | DOI | MR | Zbl

[57] G. Pearlstein, “$\mathrm{SL}_2$-orbits and degenerations of mixed Hodge structures”, J. Differential Geom., 74:1 (2006), 1–67 | MR | Zbl

[58] G. J. Pearlstein, “Variations of mixed Hodge structure, Higgs fields, and quantum cohomology”, Manuscripta Math., 102:3 (2000), 269–310 | DOI | MR | Zbl

[59] M. Saito, “Modules de Hodge polarisables”, Publ. Res. Inst. Math. Sci., 24:6 (1988), 849–995 | DOI | MR | Zbl

[60] M. Saito, “Mixed Hodge modules”, Publ. Res. Inst. Math. Sci., 26:2 (1990), 221-333 | DOI | MR | Zbl

[61] M. Schlessinger, “Functors of Artin rings”, Trans. Amer. Math. Soc., 130:2 (1968), 208–222 | DOI | MR | Zbl

[62] W. Schmid, “Variation of Hodge structure; the singularities of the period mapping”, Invent. Math., 22:3 (1973), 211–319 | DOI | MR | Zbl

[63] J. Steenbrink, S. Zucker, “Variation of mixed Hodge structure. I”, Invent. Math., 80:3 (1985), 489–542 | DOI | MR | Zbl

[64] P. Tourkine, Tropical amplitudes, arXiv: 1309.3551

[65] P. Vanhove, “The physics and the mixed Hodge structure of Feynman integrals”, String-Math 2013, Proc. Sympos. Pure Math., 88, Amer. Math. Soc., Providence, RI, 2014, 161–194 | DOI | MR | Zbl

[66] A. A. Voronov, “A unified approach to string scattering amplitudes”, Comm. Math. Phys., 131:1 (1990), 179–218 | DOI | MR | Zbl