Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_4_a7, author = {I. A. Panin}, title = {On {Grothendieck--Serre's} conjecture concerning principal $G$-bundles over reductive group {schemes:~II}}, journal = {Izvestiya. Mathematics }, pages = {759--790}, publisher = {mathdoc}, volume = {80}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a7/} }
TY - JOUR AU - I. A. Panin TI - On Grothendieck--Serre's conjecture concerning principal $G$-bundles over reductive group schemes:~II JO - Izvestiya. Mathematics PY - 2016 SP - 759 EP - 790 VL - 80 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a7/ LA - en ID - IM2_2016_80_4_a7 ER -
I. A. Panin. On Grothendieck--Serre's conjecture concerning principal $G$-bundles over reductive group schemes:~II. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 759-790. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a7/
[1] R. Fedorov, I. Panin, “A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields”, Inst. Hautes Études Sci., 122:1 (2015), 169–193 | DOI | MR | Zbl
[2] Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure, A. Grothendieck. Exposés XIX à XXVI, v. III, Lecture Notes in Math., 153, Structure des schémas en groupes réductifs, rev. reprint, eds. M. Demazure, A. Grothendieck, Springer-Verlag, Berlin–Heidelberg–New York, 1970, viii+529 pp. | DOI | Zbl
[3] J.-P. Serre, “Espaces fibrés algébriques”, Séminaire C. Chevalley, Anneaux de Chow et applications, Secrétariat mathématique, Paris, 1958, 37 pp.
[4] A. Grothendieck, “Torsion homologique et sections rationnelles”, Séminaire C. Chevalley, v. 3, Anneaux de Chow et applications, Secrétariat mathématique, Paris, 1958, 29 pp., Exp. No 5
[5] A. Grothendieck, “Le group de Brauer. II. Théories cohomologiques”, Dix exposés sur la cohomologie de schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 67–87 | MR
[6] J.-L. Colliot-Thélène, R. Parimala, R. Sridharan, “Un théorème de pureté locale”, C. R. Acad. Sci. Paris Sér. I Math., 309:14 (1989), 857–862 | MR | Zbl
[7] M. Rost, “Durch Normengruppen definierte birationale Invarianten”, C. R. Acad. Sci. Paris Sér. I Math., 310:4 (1990), 189–192 | MR | Zbl
[8] J.-L. Colliot-Thélène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Études Sci. Publ. Math., 75 (1992), 97–122 | DOI | MR | Zbl
[9] I. A. Panin, A. A. Suslin, “On a Grothendieck conjecture for Azumaya algebras”, St. Petersburg Math. J., 9:4 (1998), 851–858 | MR | Zbl
[10] K. Zainoulline, “The purity problem for functors with transfers”, K-theory, 22:4 (2001), 303–333 | MR | Zbl
[11] I. Panin, On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes. II, 2013, arXiv: abs/0905.1423v3
[12] A. Suslin, V. Voevodsky, “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94 | DOI | MR | Zbl
[13] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl
[14] J.-L. Colliot-Thélène, J.-J. Sansuc, “Principal homogeneous spaces under flasque tori: applications”, J. Algebra, 106:1 (1987), 148–205 | DOI | MR | Zbl
[15] M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. École Norm. Sup. (4), 32:1 (1999), 71–86 | DOI | MR | Zbl
[16] Y. A. Nisnevich, “Rationally trivial principal homogeneous spaces and arithmetic of reductive group schemes over Dedekind rings”, C. R. Acad. Sci. Paris Sér. I Math., 299:1 (1984), 5–8 | MR | Zbl
[17] G. Harder, “Halbeinfache Gruppenschemata über Dedekindringen”, Invent. Math., 4:3 (1967), 165–191 | DOI | MR | Zbl
[18] V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137 | MR | Zbl
[19] M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198 | DOI | MR | Zbl
[20] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1994, xvi+785 pp. | DOI | MR | Zbl
[21] D. Popescu, “General Néron desingularization and approximation”, Nagoya Math. J., 104 (1986), 85–115 | MR | Zbl
[22] R. G. Swan, “Néron–Popescu desingularization”, Algebra and geometry (Taipei, 1995), Lect. Algebra Geom., 2, Int. Press, Cambridge, MA, 1998, 135–192 | MR | Zbl
[23] A. Grothendieck, “Le group de Brauer. III. Exemples et compléments”, Dix exposés sur la cohomologie de schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 88–188 | MR
[24] M. A. Knus, A. S. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998, xxi+593 pp. | MR | Zbl
[25] I. Panin, “Purity for multipliers”, Algebra and number theory, Hindustan Book Agency, Delhi, 2005, 66–89 | MR | Zbl