On Grothendieck--Serre's conjecture concerning principal $G$-bundles over reductive group schemes:~II
Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 759-790.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof of the Grothendieck–Serre conjecture on principal bundles over a semi-local regular ring containing an infinite field is given in [1]. That proof is heavily based on Theorem 1.0.3 stated below in the introduction and proved in the present paper. Theorem 1.0.3 itself is a consequence of two purity theorems 1.0.1 and 1.0.2 which are of completely independent interest and which are proved below. The purity theorem 1.0.1 covers all the known results of this shape and looks like a final one.
Keywords: reductive group schemes, principal bundles, Grothendieck–Serre conjecture.
@article{IM2_2016_80_4_a7,
     author = {I. A. Panin},
     title = {On {Grothendieck--Serre's} conjecture concerning principal $G$-bundles over reductive group {schemes:~II}},
     journal = {Izvestiya. Mathematics },
     pages = {759--790},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a7/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - On Grothendieck--Serre's conjecture concerning principal $G$-bundles over reductive group schemes:~II
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 759
EP  - 790
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a7/
LA  - en
ID  - IM2_2016_80_4_a7
ER  - 
%0 Journal Article
%A I. A. Panin
%T On Grothendieck--Serre's conjecture concerning principal $G$-bundles over reductive group schemes:~II
%J Izvestiya. Mathematics 
%D 2016
%P 759-790
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a7/
%G en
%F IM2_2016_80_4_a7
I. A. Panin. On Grothendieck--Serre's conjecture concerning principal $G$-bundles over reductive group schemes:~II. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 759-790. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a7/

[1] R. Fedorov, I. Panin, “A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields”, Inst. Hautes Études Sci., 122:1 (2015), 169–193 | DOI | MR | Zbl

[2] Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure, A. Grothendieck. Exposés XIX à XXVI, v. III, Lecture Notes in Math., 153, Structure des schémas en groupes réductifs, rev. reprint, eds. M. Demazure, A. Grothendieck, Springer-Verlag, Berlin–Heidelberg–New York, 1970, viii+529 pp. | DOI | Zbl

[3] J.-P. Serre, “Espaces fibrés algébriques”, Séminaire C. Chevalley, Anneaux de Chow et applications, Secrétariat mathématique, Paris, 1958, 37 pp.

[4] A. Grothendieck, “Torsion homologique et sections rationnelles”, Séminaire C. Chevalley, v. 3, Anneaux de Chow et applications, Secrétariat mathématique, Paris, 1958, 29 pp., Exp. No 5

[5] A. Grothendieck, “Le group de Brauer. II. Théories cohomologiques”, Dix exposés sur la cohomologie de schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 67–87 | MR

[6] J.-L. Colliot-Thélène, R. Parimala, R. Sridharan, “Un théorème de pureté locale”, C. R. Acad. Sci. Paris Sér. I Math., 309:14 (1989), 857–862 | MR | Zbl

[7] M. Rost, “Durch Normengruppen definierte birationale Invarianten”, C. R. Acad. Sci. Paris Sér. I Math., 310:4 (1990), 189–192 | MR | Zbl

[8] J.-L. Colliot-Thélène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Études Sci. Publ. Math., 75 (1992), 97–122 | DOI | MR | Zbl

[9] I. A. Panin, A. A. Suslin, “On a Grothendieck conjecture for Azumaya algebras”, St. Petersburg Math. J., 9:4 (1998), 851–858 | MR | Zbl

[10] K. Zainoulline, “The purity problem for functors with transfers”, K-theory, 22:4 (2001), 303–333 | MR | Zbl

[11] I. Panin, On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes. II, 2013, arXiv: abs/0905.1423v3

[12] A. Suslin, V. Voevodsky, “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94 | DOI | MR | Zbl

[13] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl

[14] J.-L. Colliot-Thélène, J.-J. Sansuc, “Principal homogeneous spaces under flasque tori: applications”, J. Algebra, 106:1 (1987), 148–205 | DOI | MR | Zbl

[15] M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. École Norm. Sup. (4), 32:1 (1999), 71–86 | DOI | MR | Zbl

[16] Y. A. Nisnevich, “Rationally trivial principal homogeneous spaces and arithmetic of reductive group schemes over Dedekind rings”, C. R. Acad. Sci. Paris Sér. I Math., 299:1 (1984), 5–8 | MR | Zbl

[17] G. Harder, “Halbeinfache Gruppenschemata über Dedekindringen”, Invent. Math., 4:3 (1967), 165–191 | DOI | MR | Zbl

[18] V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137 | MR | Zbl

[19] M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198 | DOI | MR | Zbl

[20] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1994, xvi+785 pp. | DOI | MR | Zbl

[21] D. Popescu, “General Néron desingularization and approximation”, Nagoya Math. J., 104 (1986), 85–115 | MR | Zbl

[22] R. G. Swan, “Néron–Popescu desingularization”, Algebra and geometry (Taipei, 1995), Lect. Algebra Geom., 2, Int. Press, Cambridge, MA, 1998, 135–192 | MR | Zbl

[23] A. Grothendieck, “Le group de Brauer. III. Exemples et compléments”, Dix exposés sur la cohomologie de schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 88–188 | MR

[24] M. A. Knus, A. S. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998, xxi+593 pp. | MR | Zbl

[25] I. Panin, “Purity for multipliers”, Algebra and number theory, Hindustan Book Agency, Delhi, 2005, 66–89 | MR | Zbl