Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$
Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 751-758.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first part of this note shows that the odd-period polynomial of each Hecke cusp eigenform for the full modular group produces via the Rodriguez-Villegas transform ([1]) a polynomial satisfying the functional equation of zeta type and having non-trivial zeros only in the middle line of its critical strip. The second part discusses the Chebyshev lambda-structure of the polynomial ring as Borger's descent data to $\mathbf{F}_1$ and suggests its role in a possible relation of the $\Gamma_{\mathbf{R}}$-factor to `real geometry over $\mathbf{F}_1$' (cf. [2]).
Keywords: cusp forms, period polynomials, local factors.
@article{IM2_2016_80_4_a6,
     author = {Yu. I. Manin},
     title = {Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$},
     journal = {Izvestiya. Mathematics },
     pages = {751--758},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a6/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 751
EP  - 758
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a6/
LA  - en
ID  - IM2_2016_80_4_a6
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$
%J Izvestiya. Mathematics 
%D 2016
%P 751-758
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a6/
%G en
%F IM2_2016_80_4_a6
Yu. I. Manin. Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 751-758. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a6/

[1] F. Rodriguez-Villegas, “On the zeros of certain polynomials”, Proc. Amer. Math. Soc., 130:8 (2002), 2251–2254 | DOI | MR | Zbl

[2] A. Connes, C. Consani, Cyclic homology, Serre's local factors and the $\lambda$-operations, arXiv: 1211.4239

[3] J.-P. Serre, “Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures)”, Séminaire Delange–Pisot–Poitou. Théorie des nombres, 11e année, 1969/70, exp. No 19, Secrétariat Math., Paris, 1970, 15 pp. | Zbl

[4] Yu. Manin, “Lectures on zeta functions and motives (according to Deninger and Kurokawa)”, Columbia University number theory seminar (New York, 1992), Astérisque, 228, Soc. Math. France, Paris, 1995, 121–163 | MR | Zbl

[5] C. Deninger, “On the $\Gamma$-factors attached to motives”, Invent. Math., 104:1 (1991), 245–261 | DOI | MR | Zbl

[6] O. Lorscheid, A blueprinted view on $\mathbb{F}_1$-geometry, arXiv: 1301.0083

[7] Yu. I. Manin, “Cyclotomy and analytic geometry over $\mathbb F_1$”, Quanta of maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 385–408 ; arXiv: 0809.1564 | MR | Zbl

[8] C. Soulé, “Les variétés sur le corps à un élément”, Mosc. Math. J., 4:1 (2004), 217–244 | MR | Zbl

[9] M. Kapranov, A. Smirnov, Cohomology determinants and reciprocity laws: number field case, Unpublished manuscript, 1996, 15 pp.

[10] A. Connes, C. Consani, “Schemes over $\mathbb{F}_1$ and zeta functions”, Compos. Math., 146:6 (2010), 1383–1415 | DOI | MR | Zbl

[11] L. Le Bruyn, Absolute geometry and the Habiro topology, arXiv: 1304.6532

[12] V. V. Golyshev, The canonical strip. I, arXiv: 0903.2076

[13] J. Borger, $\Lambda$-rings and the field with one element, arXiv: 0906.3146

[14] N. Naumann, “Algebraic independence in the Grothendieck ring of varieties”, Trans. Amer. Math. Soc., 359:4 (2007), 1653–1683 | DOI | MR | Zbl

[15] N. Ramachandran, “Zeta functions, Grothendieck groups, and the Witt ring”, Bull. Sci. Math., 139:6 (2015), 599–627 ; arXiv: 1407.1813 | DOI | MR | Zbl

[16] J. B. Conrey, D. W. Farmer, Ö. Imamoglu, “The nontrivial zeros of period polynomials of modular forms lie on the unit circle”, Int. Math. Res. Not. IMRN, 2013:20 (2013), 4758–4771 ; arXiv: 1201.2322 | DOI | MR | Zbl

[17] A. El-Guindy, W. Raji, “Unimodularity of zeros of period polynomials of Hecke eigenforms”, Bull. Lond. Math. Soc., 46:3 (2014), 528–536 | DOI | MR | Zbl

[18] O. Lorscheid, “Functional equations for zeta functions of $\mathbf{F}_1$-schemes”, C. R. Math. Acad. Sci. Paris, 348:21-22 (2010), 1143–1146 ; arXiv: 1010.1754 | DOI | MR | Zbl

[19] L. Schneps, “On the Poisson bracket on the free Lie algebra in two generators”, J. Lie Theory, 16:1 (2006), 19–37 | MR | Zbl

[20] R. Hain, The Hodge–de Rham theory of modular groups, arXiv: 1403.6443

[21] A. Pollack, Relations between derivations arising from modular forms http://dukespace.lib.duke.edu/dspace/handle/10161/1281

[22] K. Habiro, “Cyclotomic completions of polynomial rings”, Publ. Res. Inst. Math. Sci., 40:4 (2004), 1127–1146 | DOI | MR | Zbl

[23] F. J.-B. J. Clauwens, “Commuting polynomials and $\lambda$-ring structures on $\mathbf{Z}[x]$”, J. Pure Appl. Algebra, 95:3 (1994), 261–269 | DOI | MR | Zbl