Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$
Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 751-758

Voir la notice de l'article provenant de la source Math-Net.Ru

The first part of this note shows that the odd-period polynomial of each Hecke cusp eigenform for the full modular group produces via the Rodriguez-Villegas transform ([1]) a polynomial satisfying the functional equation of zeta type and having non-trivial zeros only in the middle line of its critical strip. The second part discusses the Chebyshev lambda-structure of the polynomial ring as Borger's descent data to $\mathbf{F}_1$ and suggests its role in a possible relation of the $\Gamma_{\mathbf{R}}$-factor to `real geometry over $\mathbf{F}_1$' (cf. [2]).
Keywords: cusp forms, period polynomials, local factors.
@article{IM2_2016_80_4_a6,
     author = {Yu. I. Manin},
     title = {Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$},
     journal = {Izvestiya. Mathematics },
     pages = {751--758},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a6/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 751
EP  - 758
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a6/
LA  - en
ID  - IM2_2016_80_4_a6
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$
%J Izvestiya. Mathematics 
%D 2016
%P 751-758
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a6/
%G en
%F IM2_2016_80_4_a6
Yu. I. Manin. Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 751-758. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a6/