Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_4_a5, author = {V. G. Kac and M. Wakimoto}, title = {Representations of affine superalgebras and mock theta {functions.~III}}, journal = {Izvestiya. Mathematics }, pages = {693--750}, publisher = {mathdoc}, volume = {80}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a5/} }
V. G. Kac; M. Wakimoto. Representations of affine superalgebras and mock theta functions.~III. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 693-750. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a5/
[1] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990, xxii+400 pp. | DOI | MR | MR | Zbl | Zbl
[2] V. G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and Appell's function”, Comm. Math. Phys., 215:3 (2001), 631–682 | DOI | MR | Zbl
[3] M. Gorelik, V. G. Kac, “Characters of (relatively) integrable modules over affine Lie superalgebras”, Jpn. J. Math, 10:2 (2015), 135–235 ; arXiv: 1406.6860 | DOI | MR | Zbl
[4] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions”, Transform. Groups, 19:2 (2014), 383–455 | DOI | MR | Zbl
[5] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions. II”, Adv. Math., 300 (2016) (to appear); arXiv: 1402.0727
[6] S. P. Zwegers, Mock theta functions, Ph.D. thesis, Utrecht University, 2002, 92 pp.; arXiv: 0807.4834
[7] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR | Zbl
[8] V. G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory”, Lie theory and geometry, Progr. Math., 123, Birkhäuser, Boston, MA, 1994, 415–456 | MR | Zbl
[9] V. Serganova, “On generalizations of root systems”, Comm. Algebra, 24:13 (1996), 4281–4299 | DOI | MR | Zbl
[10] V. G. Kac, M. Wakimoto, “Quantum reduction in the twisted case”, Infinite dimensional algebras and quantum integrable systems, Progr. Math., 237, Birkhäuser, Basel, 2005, 89–131 | DOI | MR | Zbl