Representations of affine superalgebras and mock theta functions.~III
Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 693-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study modular invariance of normalized supercharacters of tame integrable modules over an affine Lie superalgebra, associated to an arbitrary basic Lie superalgebra $\mathfrak g$. For this we develop a several step modification process of multivariable mock theta functions, where at each step a Zwegers' type ‘modifier’ is used. We show that the span of the resulting modified normalized supercharacters is $\operatorname{SL}_2(\mathbb Z)$-invariant, with the transformation matrix equal, in the case the Killing form on $\mathfrak g$ is non-degenerate, to that for the basic defect 0 subalgebra $\mathfrak g^!$ of $\mathfrak g$, orthogonal to a maximal isotropic set of roots of $\mathfrak g$.
Keywords: basic finite-dimensional Lie superalgebra, affine Lie superalgebra, tame integrable modules, normalized supercharacters, mock theta function, modification process, modular invariance.
@article{IM2_2016_80_4_a5,
     author = {V. G. Kac and M. Wakimoto},
     title = {Representations of affine superalgebras and mock theta {functions.~III}},
     journal = {Izvestiya. Mathematics },
     pages = {693--750},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a5/}
}
TY  - JOUR
AU  - V. G. Kac
AU  - M. Wakimoto
TI  - Representations of affine superalgebras and mock theta functions.~III
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 693
EP  - 750
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a5/
LA  - en
ID  - IM2_2016_80_4_a5
ER  - 
%0 Journal Article
%A V. G. Kac
%A M. Wakimoto
%T Representations of affine superalgebras and mock theta functions.~III
%J Izvestiya. Mathematics 
%D 2016
%P 693-750
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a5/
%G en
%F IM2_2016_80_4_a5
V. G. Kac; M. Wakimoto. Representations of affine superalgebras and mock theta functions.~III. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 693-750. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a5/

[1] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990, xxii+400 pp. | DOI | MR | MR | Zbl | Zbl

[2] V. G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and Appell's function”, Comm. Math. Phys., 215:3 (2001), 631–682 | DOI | MR | Zbl

[3] M. Gorelik, V. G. Kac, “Characters of (relatively) integrable modules over affine Lie superalgebras”, Jpn. J. Math, 10:2 (2015), 135–235 ; arXiv: 1406.6860 | DOI | MR | Zbl

[4] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions”, Transform. Groups, 19:2 (2014), 383–455 | DOI | MR | Zbl

[5] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions. II”, Adv. Math., 300 (2016) (to appear); arXiv: 1402.0727

[6] S. P. Zwegers, Mock theta functions, Ph.D. thesis, Utrecht University, 2002, 92 pp.; arXiv: 0807.4834

[7] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR | Zbl

[8] V. G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory”, Lie theory and geometry, Progr. Math., 123, Birkhäuser, Boston, MA, 1994, 415–456 | MR | Zbl

[9] V. Serganova, “On generalizations of root systems”, Comm. Algebra, 24:13 (1996), 4281–4299 | DOI | MR | Zbl

[10] V. G. Kac, M. Wakimoto, “Quantum reduction in the twisted case”, Infinite dimensional algebras and quantum integrable systems, Progr. Math., 237, Birkhäuser, Basel, 2005, 89–131 | DOI | MR | Zbl