Cyclic covers that are not stably rational
Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 665-677.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using methods developed by Kollár, Voisin, ourselves and Totaro, we prove that a cyclic cover of $\mathbb P_{\mathbb C}^n$, $n\geqslant 3$, of prime degree $p$, ramified along a very general hypersurface $f(x_0,\dots , x_n)=0$ of degree $mp$, is not stably rational if $m(p-1) $. In dimension 3 we recover double covers of $\mathbb P^3_{\mathbb C}$ ramified along a very general surface of degree 4 (Voisin) and double covers of $\mathbb P^3_{\mathbb C}$ ramified along a very general surface of degree 6 (Beauville). We also find double covers of $\mathbb P^4_{\mathbb C}$ ramified along a very general hypersurface of degree 6. This method also enables us to produce examples over a number field.
Keywords: stable rationality, Chow group of zero-cycles, cyclic covers.
@article{IM2_2016_80_4_a3,
     author = {J.-L. Colliot-Th\'el\`ene and A. Pirutka},
     title = {Cyclic covers that are not stably rational},
     journal = {Izvestiya. Mathematics },
     pages = {665--677},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/}
}
TY  - JOUR
AU  - J.-L. Colliot-Thélène
AU  - A. Pirutka
TI  - Cyclic covers that are not stably rational
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 665
EP  - 677
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/
LA  - en
ID  - IM2_2016_80_4_a3
ER  - 
%0 Journal Article
%A J.-L. Colliot-Thélène
%A A. Pirutka
%T Cyclic covers that are not stably rational
%J Izvestiya. Mathematics 
%D 2016
%P 665-677
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/
%G en
%F IM2_2016_80_4_a3
J.-L. Colliot-Thélène; A. Pirutka. Cyclic covers that are not stably rational. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 665-677. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/

[1] A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc, P. Swinnerton-Dyer, “Variétés stablement rationnelles non rationnelles”, Ann. of Math. (2), 121:2 (1985), 283–318 | DOI | MR | Zbl

[2] C. Voisin, “Unirational threefolds with no universal codimension 2 cycles”, Invent. Math., 201:1 (2015), 207–237 ; arXiv: 1312.2122 | DOI | MR | Zbl

[3] J.-L. Colliot-Thélène, A. Pirutka, “Hypersurfaces quartiques de dimension 3: non rationalité stable”, Ann. Sci. École Norm. Sup. (2), 49 (2016), 371–397; arXiv: 1402.4153

[4] A. Beauville, “A very general sextic double solid is not stably rational”, Bull. London Math. Soc., 48:2 (2016), 321–324 ; arXiv: 1411.7484 | DOI | Zbl

[5] B. Hassett, A. Kresch, Y. Tschinkel, Stable rationality and conic bundles (to appear) , arXiv: 1503.08497

[6] B. Totaro, “Hypersurfaces that are not stably rational”, J. Amer. Math. Soc., 29:3 (2016), 883–891 ; arXiv: 1502.04040 | DOI | MR

[7] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996, viii+320 pp. | DOI | MR | Zbl

[8] J. Kollár, K. E. Smith, A. Corti, Rational and nearly rational varieties, Cambridge Stud. Adv. Math., 92, Cambridge Univ. Press, Cambridge, 2004, vi+235 pp. | DOI | MR | Zbl

[9] J. Kollár, “Nonrational hypersurfaces”, J. Amer. Math. Soc., 8:1 (1995), 241–249 | DOI | MR | Zbl