Cyclic covers that are not stably rational
Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 665-677

Voir la notice de l'article provenant de la source Math-Net.Ru

Using methods developed by Kollár, Voisin, ourselves and Totaro, we prove that a cyclic cover of $\mathbb P_{\mathbb C}^n$, $n\geqslant 3$, of prime degree $p$, ramified along a very general hypersurface $f(x_0,\dots , x_n)=0$ of degree $mp$, is not stably rational if $m(p-1) $. In dimension 3 we recover double covers of $\mathbb P^3_{\mathbb C}$ ramified along a very general surface of degree 4 (Voisin) and double covers of $\mathbb P^3_{\mathbb C}$ ramified along a very general surface of degree 6 (Beauville). We also find double covers of $\mathbb P^4_{\mathbb C}$ ramified along a very general hypersurface of degree 6. This method also enables us to produce examples over a number field.
Keywords: stable rationality, Chow group of zero-cycles, cyclic covers.
@article{IM2_2016_80_4_a3,
     author = {J.-L. Colliot-Th\'el\`ene and A. Pirutka},
     title = {Cyclic covers that are not stably rational},
     journal = {Izvestiya. Mathematics },
     pages = {665--677},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/}
}
TY  - JOUR
AU  - J.-L. Colliot-Thélène
AU  - A. Pirutka
TI  - Cyclic covers that are not stably rational
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 665
EP  - 677
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/
LA  - en
ID  - IM2_2016_80_4_a3
ER  - 
%0 Journal Article
%A J.-L. Colliot-Thélène
%A A. Pirutka
%T Cyclic covers that are not stably rational
%J Izvestiya. Mathematics 
%D 2016
%P 665-677
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/
%G en
%F IM2_2016_80_4_a3
J.-L. Colliot-Thélène; A. Pirutka. Cyclic covers that are not stably rational. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 665-677. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/