Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_4_a3, author = {J.-L. Colliot-Th\'el\`ene and A. Pirutka}, title = {Cyclic covers that are not stably rational}, journal = {Izvestiya. Mathematics }, pages = {665--677}, publisher = {mathdoc}, volume = {80}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/} }
J.-L. Colliot-Thélène; A. Pirutka. Cyclic covers that are not stably rational. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 665-677. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a3/
[1] A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc, P. Swinnerton-Dyer, “Variétés stablement rationnelles non rationnelles”, Ann. of Math. (2), 121:2 (1985), 283–318 | DOI | MR | Zbl
[2] C. Voisin, “Unirational threefolds with no universal codimension 2 cycles”, Invent. Math., 201:1 (2015), 207–237 ; arXiv: 1312.2122 | DOI | MR | Zbl
[3] J.-L. Colliot-Thélène, A. Pirutka, “Hypersurfaces quartiques de dimension 3: non rationalité stable”, Ann. Sci. École Norm. Sup. (2), 49 (2016), 371–397; arXiv: 1402.4153
[4] A. Beauville, “A very general sextic double solid is not stably rational”, Bull. London Math. Soc., 48:2 (2016), 321–324 ; arXiv: 1411.7484 | DOI | Zbl
[5] B. Hassett, A. Kresch, Y. Tschinkel, Stable rationality and conic bundles (to appear) , arXiv: 1503.08497
[6] B. Totaro, “Hypersurfaces that are not stably rational”, J. Amer. Math. Soc., 29:3 (2016), 883–891 ; arXiv: 1502.04040 | DOI | MR
[7] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996, viii+320 pp. | DOI | MR | Zbl
[8] J. Kollár, K. E. Smith, A. Corti, Rational and nearly rational varieties, Cambridge Stud. Adv. Math., 92, Cambridge Univ. Press, Cambridge, 2004, vi+235 pp. | DOI | MR | Zbl
[9] J. Kollár, “Nonrational hypersurfaces”, J. Amer. Math. Soc., 8:1 (1995), 241–249 | DOI | MR | Zbl