Embeddings of maximal tori in classical groups over local and global fields
Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 647-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

Embeddings of maximal tori in classical groups over fields of characteristic not 2 are the subject matter of several recent papers. The aim of the present paper is to give necessary and sufficient conditions for such an embedding to exist, when the base field is a local field, or the field of real numbers. This completes the results of [3], where a complete criterion is given for the Hasse principle to hold when the base field is a global field.
Keywords: classical group.
Mots-clés : maximal torus
@article{IM2_2016_80_4_a2,
     author = {E. Bayer-Fluckiger and T-Y. Lee and R. Parimala},
     title = {Embeddings of maximal tori in classical groups over local and global fields},
     journal = {Izvestiya. Mathematics },
     pages = {647--664},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/}
}
TY  - JOUR
AU  - E. Bayer-Fluckiger
AU  - T-Y. Lee
AU  - R. Parimala
TI  - Embeddings of maximal tori in classical groups over local and global fields
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 647
EP  - 664
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/
LA  - en
ID  - IM2_2016_80_4_a2
ER  - 
%0 Journal Article
%A E. Bayer-Fluckiger
%A T-Y. Lee
%A R. Parimala
%T Embeddings of maximal tori in classical groups over local and global fields
%J Izvestiya. Mathematics 
%D 2016
%P 647-664
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/
%G en
%F IM2_2016_80_4_a2
E. Bayer-Fluckiger; T-Y. Lee; R. Parimala. Embeddings of maximal tori in classical groups over local and global fields. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 647-664. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/

[5] E. Bayer-Fluckiger, “Embeddings of maximal tori in orthogonal groups”, Ann. Inst. Fourier (Grenoble), 64:1 (2014), 113–125 | DOI | MR | Zbl

[6] E. Bayer-Fluckiger, “Isometries of quadratic spaces”, J. Eur. Math. Soc. (JEMS), 17:7 (2015), 1629–1656 | DOI | MR | Zbl

[7] E. Bayer-Fluckiger, Ting-Yu Lee, R. Parimala, “Embeddings of maximal tori in classical groups and explicit Brauer–Manin obstruction”, J. Eur. Math. Soc. (to appear)

[8] R. Brusamarello, P. Chuard-Koulmann, J. Morales, “Orthogonal groups containing a given maximal torus”, J. Algebra, 266:1 (2003), 87–101 | DOI | MR | Zbl

[9] A. Fiori, “Characterization of special points on orthogonal symmetric spaces”, J. Algebra, 372 (2012), 397–419 | DOI | MR | Zbl

[10] M. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998 | Zbl

[11] Ting-Yu Lee, “Embedding functors and their arithmetic properties”, Comment. Math. Helv., 89:3 (2014), 671–717 | DOI | MR | Zbl

[12] D. W. Lewis, J.-P. Tignol, “Classification theorems for central simple algebras with involution (with an appendix by R. Parimala)”, Manuscripta Math., 100:3 (1999), 259–276 | DOI | MR | Zbl

[13] G. Prasad, A. S. Rapinchuk, “Local–global principles for embedding of fields with involution into simple algebras with involution”, Comment. Math. Helv., 85:3 (2010), 583–645 | DOI | MR | Zbl

[14] W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss., 270, Springer-Verlag, Berlin, 1985, x+421 pp. | DOI | MR | Zbl

[15] T. Tsukamoto, “On the local theory of quaternionic anti-hermitian forms”, J. Math. Soc. Japan, 13:4 (1961), 387–400 | DOI | MR | Zbl