Embeddings of maximal tori in classical groups over local and global fields
Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 647-664
Voir la notice de l'article provenant de la source Math-Net.Ru
Embeddings of maximal tori in classical groups over fields
of characteristic not 2 are the subject matter of several recent papers. The
aim of the present paper is to give necessary and sufficient conditions for
such an embedding to exist, when the base field is a local field, or the
field of real numbers. This completes the results of [3], where
a complete criterion is given for the Hasse principle to hold when the base
field is a global field.
Keywords:
classical group.
Mots-clés : maximal torus
Mots-clés : maximal torus
@article{IM2_2016_80_4_a2,
author = {E. Bayer-Fluckiger and T-Y. Lee and R. Parimala},
title = {Embeddings of maximal tori in classical groups over local and global fields},
journal = {Izvestiya. Mathematics },
pages = {647--664},
publisher = {mathdoc},
volume = {80},
number = {4},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/}
}
TY - JOUR AU - E. Bayer-Fluckiger AU - T-Y. Lee AU - R. Parimala TI - Embeddings of maximal tori in classical groups over local and global fields JO - Izvestiya. Mathematics PY - 2016 SP - 647 EP - 664 VL - 80 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/ LA - en ID - IM2_2016_80_4_a2 ER -
E. Bayer-Fluckiger; T-Y. Lee; R. Parimala. Embeddings of maximal tori in classical groups over local and global fields. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 647-664. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/