Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_4_a2, author = {E. Bayer-Fluckiger and T-Y. Lee and R. Parimala}, title = {Embeddings of maximal tori in classical groups over local and global fields}, journal = {Izvestiya. Mathematics }, pages = {647--664}, publisher = {mathdoc}, volume = {80}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/} }
TY - JOUR AU - E. Bayer-Fluckiger AU - T-Y. Lee AU - R. Parimala TI - Embeddings of maximal tori in classical groups over local and global fields JO - Izvestiya. Mathematics PY - 2016 SP - 647 EP - 664 VL - 80 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/ LA - en ID - IM2_2016_80_4_a2 ER -
E. Bayer-Fluckiger; T-Y. Lee; R. Parimala. Embeddings of maximal tori in classical groups over local and global fields. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 647-664. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a2/
[5] E. Bayer-Fluckiger, “Embeddings of maximal tori in orthogonal groups”, Ann. Inst. Fourier (Grenoble), 64:1 (2014), 113–125 | DOI | MR | Zbl
[6] E. Bayer-Fluckiger, “Isometries of quadratic spaces”, J. Eur. Math. Soc. (JEMS), 17:7 (2015), 1629–1656 | DOI | MR | Zbl
[7] E. Bayer-Fluckiger, Ting-Yu Lee, R. Parimala, “Embeddings of maximal tori in classical groups and explicit Brauer–Manin obstruction”, J. Eur. Math. Soc. (to appear)
[8] R. Brusamarello, P. Chuard-Koulmann, J. Morales, “Orthogonal groups containing a given maximal torus”, J. Algebra, 266:1 (2003), 87–101 | DOI | MR | Zbl
[9] A. Fiori, “Characterization of special points on orthogonal symmetric spaces”, J. Algebra, 372 (2012), 397–419 | DOI | MR | Zbl
[10] M. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998 | Zbl
[11] Ting-Yu Lee, “Embedding functors and their arithmetic properties”, Comment. Math. Helv., 89:3 (2014), 671–717 | DOI | MR | Zbl
[12] D. W. Lewis, J.-P. Tignol, “Classification theorems for central simple algebras with involution (with an appendix by R. Parimala)”, Manuscripta Math., 100:3 (1999), 259–276 | DOI | MR | Zbl
[13] G. Prasad, A. S. Rapinchuk, “Local–global principles for embedding of fields with involution into simple algebras with involution”, Comment. Math. Helv., 85:3 (2010), 583–645 | DOI | MR | Zbl
[14] W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss., 270, Springer-Verlag, Berlin, 1985, x+421 pp. | DOI | MR | Zbl
[15] T. Tsukamoto, “On the local theory of quaternionic anti-hermitian forms”, J. Math. Soc. Japan, 13:4 (1961), 387–400 | DOI | MR | Zbl