Universal theory of a~free polynilpotent group
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 623-632.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a free group of rank $\geqslant2$ in an arbitrary polynilpotent variety $\mathfrak N_{c_1}\mathfrak N_{c_2}\dots\mathfrak N_{c_s}$, $s\geqslant2$, $c_i\geqslant1$, $c_s\geqslant2$, has undecidable universal theory.
Keywords: universal theory, variety of groups, nilpotent group, polynilpotent group.
Mots-clés : soluble group
@article{IM2_2016_80_3_a8,
     author = {E. I. Timoshenko},
     title = {Universal theory of a~free polynilpotent group},
     journal = {Izvestiya. Mathematics },
     pages = {623--632},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a8/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Universal theory of a~free polynilpotent group
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 623
EP  - 632
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a8/
LA  - en
ID  - IM2_2016_80_3_a8
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Universal theory of a~free polynilpotent group
%J Izvestiya. Mathematics 
%D 2016
%P 623-632
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a8/
%G en
%F IM2_2016_80_3_a8
E. I. Timoshenko. Universal theory of a~free polynilpotent group. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 623-632. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a8/

[1] A. I. Mal'tsev, “On free soluble groups”, Soviet Math. Dokl., 1 (1960), 65–68 | Zbl

[2] O. Chapuis, “On the theories of free solvable groups”, J. Pure Appl. Algebra, 131:1 (1998), 13–24 | DOI | MR | Zbl

[3] V. A. Roman'kov, “Unsolvability of the endomorphic reducibility problem in free nilpotent groups and in free rings”, Algebra and Logic, 16:4 (1978), 310–320 | DOI | MR | Zbl

[4] V. A. Roman'kov, “Equations in free metabelian groups”, Sib. Math. J., 20 (1980), 469–471 | DOI | MR | Zbl

[5] V. Roman'kov, “Equations over groups”, Groups Complex. Cryptol., 4:2 (2012), 191–239 | DOI | MR | Zbl

[6] N. N. Repin, “Equations with one unknown in nilpotent groups”, Math. Notes, 34:2 (1983), 582–585 | DOI | MR | Zbl

[7] N. N. Repin, “The solvability problem for equations in one unknown in nilpotent groups”, Math. USSR-Izv., 25:3 (1985), 601–618 | DOI | MR | Zbl

[8] O. Chapuis, “Universal theory of certain solvable groups and bounded Ore group rings”, J. Algebra, 176:2 (1995), 368–391 | DOI | MR | Zbl

[9] O. Chapuis, “$\forall$-free metabelian groups”, J. Symbolic Logic, 62:1 (1997), 159–174 | DOI | MR | Zbl

[10] N. S. Romanovskii, “Universal theories for free solvable groups”, Algebra and Logic, 51:3 (2012), 259–263 | DOI | MR | Zbl

[11] V. A. Roman'kov, “Universal theory of nilpotent groups”, Math. Notes, 25:4 (1979), 253–258 | DOI | MR | Zbl

[12] Yu. V. Matiyasevich, “Enumerable sets are diophantine”, Soviet Math. Dokl., 11 (1970), 354–358 | MR | Zbl

[13] H. Neumann, Varieties of groups, Ergeb. Math. Grenzgeb., 37, Springer-Verlag, New York, 1967, x+192 pp. | MR | MR | Zbl

[14] V. N. Remeslennikov, V. G. Sokolov, “Some properties of a Magnus embedding”, Algebra and Logic, 9:5 (1970), 342–349 | DOI | MR | Zbl

[15] N. Gupta, Free group rings, Contemp. Math., 66, Amer. Math. Soc., Providence, RI, 1987, xii+129 pp. | DOI | MR | Zbl

[16] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Pure Appl. Math., 13, Intersci. Publ., John Wiley and Sons, New York, 1966, xii+444 pp. | MR | Zbl | Zbl

[17] C. K. Gupta, N. S. Romanovski, “On torsion in factors of polynilpotent series of a group with a single relation”, Internat. J. Algebra Comput., 14:4 (2004), 513–523 | DOI | MR | Zbl

[18] V. A. Roman'kov, “Width of verbal subgroups in solvable groups”, Algebra and Logic, 21:1 (1983), 41–49 | DOI | MR | Zbl