Universal theory of a~free polynilpotent group
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 623-632

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a free group of rank $\geqslant2$ in an arbitrary polynilpotent variety $\mathfrak N_{c_1}\mathfrak N_{c_2}\dots\mathfrak N_{c_s}$, $s\geqslant2$, $c_i\geqslant1$, $c_s\geqslant2$, has undecidable universal theory.
Keywords: universal theory, variety of groups, nilpotent group, polynilpotent group.
Mots-clés : soluble group
@article{IM2_2016_80_3_a8,
     author = {E. I. Timoshenko},
     title = {Universal theory of a~free polynilpotent group},
     journal = {Izvestiya. Mathematics },
     pages = {623--632},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a8/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Universal theory of a~free polynilpotent group
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 623
EP  - 632
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a8/
LA  - en
ID  - IM2_2016_80_3_a8
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Universal theory of a~free polynilpotent group
%J Izvestiya. Mathematics 
%D 2016
%P 623-632
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a8/
%G en
%F IM2_2016_80_3_a8
E. I. Timoshenko. Universal theory of a~free polynilpotent group. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 623-632. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a8/