On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 602-622

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider in detail Selberg's method for proving that under certain natural assumptions, a positive proportion of the non-trivial zeros of a linear combination of L-functions from the Selberg class lie on the critical line. As an example, we provide all the ingredients necessary to prove this result in the case of a linear combination of L-functions of degree two attached to automorphic forms.
Keywords: Riemann hypothesis, zeros on the critical line, Selberg class, density theorems, Hecke L-functions.
@article{IM2_2016_80_3_a7,
     author = {I. S. Rezvyakova},
     title = {On the zeros of linear combinations of {L-functions} of degree two on the critical line. {Selberg's} approach},
     journal = {Izvestiya. Mathematics },
     pages = {602--622},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/}
}
TY  - JOUR
AU  - I. S. Rezvyakova
TI  - On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 602
EP  - 622
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/
LA  - en
ID  - IM2_2016_80_3_a7
ER  - 
%0 Journal Article
%A I. S. Rezvyakova
%T On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach
%J Izvestiya. Mathematics 
%D 2016
%P 602-622
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/
%G en
%F IM2_2016_80_3_a7
I. S. Rezvyakova. On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 602-622. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/