On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 602-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider in detail Selberg's method for proving that under certain natural assumptions, a positive proportion of the non-trivial zeros of a linear combination of L-functions from the Selberg class lie on the critical line. As an example, we provide all the ingredients necessary to prove this result in the case of a linear combination of L-functions of degree two attached to automorphic forms.
Keywords: Riemann hypothesis, zeros on the critical line, Selberg class, density theorems, Hecke L-functions.
@article{IM2_2016_80_3_a7,
     author = {I. S. Rezvyakova},
     title = {On the zeros of linear combinations of {L-functions} of degree two on the critical line. {Selberg's} approach},
     journal = {Izvestiya. Mathematics },
     pages = {602--622},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/}
}
TY  - JOUR
AU  - I. S. Rezvyakova
TI  - On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 602
EP  - 622
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/
LA  - en
ID  - IM2_2016_80_3_a7
ER  - 
%0 Journal Article
%A I. S. Rezvyakova
%T On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach
%J Izvestiya. Mathematics 
%D 2016
%P 602-622
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/
%G en
%F IM2_2016_80_3_a7
I. S. Rezvyakova. On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 602-622. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/

[1] A. Selberg, “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo. I, 1942:10 (1942), 1–59 | MR | Zbl

[2] A. Selberg, “Old and new conjectures and results about a class of Dirichlet series”, Collected papers, v. II, Springer-Verlag, Berlin, 1991, 47–63 | MR | Zbl

[3] H.-E. Richert, “Über Dirichletreihen mit Funktionalgleichung”, Acad. Serbe Sci. Publ. Inst. Math., 11 (1957), 73–124 | MR | Zbl

[4] J. Kaczorowski, A. Perelli, “On the structure of the Selberg class, VII: $12$”, Ann. of Math. (2), 173:3 (2011), 1397–1441 | DOI | MR | Zbl

[5] J. L. Hafner, “Zeros on the critical line of Dirichlet series attached to certain cusp forms”, Math. Ann., 264:1 (1983), 21–37 | DOI | MR | Zbl

[6] J. L. Hafner, “Zeros on the critical line for Maass wave form L-functions”, J. Reine Angew. Math., 1987:377 (1987), 127–158 | DOI | MR | Zbl

[7] H. Iwaniec, Topics in classical automorphic forms, Grad. Stud. Math., 17, Amer. Math. Soc., Providence, RI, 1997, xii+259 pp. | DOI | MR | Zbl

[8] I. S. Rezvyakova, “On the zeros on the critical line of $L$-functions corresponding to automorphic cusp forms”, Math. Notes, 88:3 (2010), 423–439 | DOI | DOI | MR | Zbl

[9] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series, I, II”, J. London Math. Soc., S1-11:3 (1936), 181–185 | DOI | MR | Zbl

[10] S. M. Voronin, “The zeros of zeta-functions of quadratic forms”, Proc. Steklov Inst. Math., 142 (1979), 143–155 | MR | Zbl

[11] Y. Lee, “On the zeros of Epstein zeta functions”, Forum Math., 26:6 (2014), 1807–1836 | DOI | MR | Zbl

[12] E. Bombieri, D. A. Hejhal, “Sur les zéros des fonctions zêta d'Epstein”, C. R. Acad. Sci. Paris Sér. I Math., 304:9 (1987), 213–217 | MR | Zbl

[13] S. M. Voronin, “On the zeros of some Dirichlet series lying on the critical line”, Math. USSR-Izv., 16:1 (1981), 55–82 | DOI | MR | Zbl

[14] A. A. Karatsuba, “On the zeros of the Davenport–Heilbronn function lying on the critical line”, Math. USSR-Izv., 36:2 (1991), 311–324 | DOI | MR | Zbl

[15] A. A. Karatsuba, “A new approach to the problem of the zeros of some Dirichlet series”, Proc. Steklov Inst. Math., 207 (1995), 163–177 | MR | Zbl

[16] A. Selberg, Zeros on the critical line of linear combinations of Euler products, The talk on the Analysis seminar at Uppsala University on 08.09.1998, 1998 {http://publications.ias.edu/sites/default/files/DOCuu98.pdf}

[17] A. Selberg, Linear combinations of L-functions and zeros on the critical Line, The talk at MSRI on a workshop “Random matrices and their applications”, June 7–11, 1999, 1999 {http://www.msri.org/realvideo/ln/msri/1999/random/selberg/1/main.html}

[18] I. S. Rezvyakova, “Zeros of linear combinations of Hecke $L$-functions on the critical line”, Izv. Math., 74:6 (2010), 1277–1314 | DOI | DOI | MR | Zbl

[19] E. Bombieri, A. Ghosh, “Around the Davenport–Heilbronn function”, Russ. Math. Surv., 66:2 (2011), 221–270 | DOI | DOI | MR | Zbl

[20] I. S. Rezvyakova, “On the zeros of the Epstein zeta-function on the critical line”, Russian Math. Surveys, 70:4 (2015), 785–787 | DOI | DOI | MR | Zbl

[21] E. Hecke, “Über die Zetafunktion beliebiger algebraischer Zahlkörper”, Nach. Ges. Wiss. Göttingen. Mat.-Phys. Kl., 1917 (1917), 77–89 | Zbl

[22] E. Hecke, “Zur Theorie der elliptischen Modulfunktionen”, Math. Ann., 97:1 (1927), 210–242 | DOI | MR | Zbl

[23] K.-M. Tsang, The distribution of the values of the Riemann zeta-function, Thesis (Ph.D.), Princeton Univ. Press, Princeton, 1984, 189 pp. | MR

[24] A. Ghosh, “On the Riemann zeta-function – Mean value theorems and the distribution of $|S(T)|$”, J. Number Theory, 17:1 (1983), 93–102 | DOI | MR | Zbl

[25] A. Selberg, “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl

[26] W. Luo, “Zeros of Hecke $L$-functions associated with cusp forms”, Acta Arith., 71:2 (1995), 139–158 | MR | Zbl

[27] E. Hecke, “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I”, Math. Ann., 114:1 (1937), 1–28 | DOI | MR | Zbl

[28] R. A. Rankin, “Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical questions. II”, Proc. Cambridge Philos. Soc., 35:3 (1939), 357–372 | DOI | MR | Zbl

[29] A. Sankaranarayanan, “On Hecke $L$-functions associated with cusp forms. II. On the sign changes of $S_f(T)$”, Ann. Acad. Sci. Fenn. Math., 31:1 (2006), 213–238 | MR | Zbl