On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 602-622
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider in detail Selberg's method for proving that
under certain natural assumptions, a positive proportion of the non-trivial zeros
of a linear combination of L-functions from the Selberg class lie on the critical
line. As an example, we provide all the ingredients necessary to prove this result
in the case of a linear combination of L-functions of degree two attached
to automorphic forms.
Keywords:
Riemann hypothesis, zeros on the critical line, Selberg class, density theorems, Hecke L-functions.
@article{IM2_2016_80_3_a7,
author = {I. S. Rezvyakova},
title = {On the zeros of linear combinations of {L-functions} of degree two on the critical line. {Selberg's} approach},
journal = {Izvestiya. Mathematics },
pages = {602--622},
publisher = {mathdoc},
volume = {80},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/}
}
TY - JOUR AU - I. S. Rezvyakova TI - On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach JO - Izvestiya. Mathematics PY - 2016 SP - 602 EP - 622 VL - 80 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/ LA - en ID - IM2_2016_80_3_a7 ER -
I. S. Rezvyakova. On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 602-622. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a7/