An analogue of the Littlewood--Paley theorem for orthoprojectors onto wavelet subspaces
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 557-601

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces corresponding to a non-isotropic multiresolution analysis generated by the tensor product of smooth scaling functions of one variable with sufficiently rapid decay at infinity.
Keywords: orthoprojector, wavelet subspaces, scaling function, multiresolution analysis, Littlewood–Paley theorem.
@article{IM2_2016_80_3_a6,
     author = {S. N. Kudryavtsev},
     title = {An analogue of the {Littlewood--Paley} theorem for orthoprojectors onto wavelet subspaces},
     journal = {Izvestiya. Mathematics },
     pages = {557--601},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a6/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - An analogue of the Littlewood--Paley theorem for orthoprojectors onto wavelet subspaces
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 557
EP  - 601
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a6/
LA  - en
ID  - IM2_2016_80_3_a6
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T An analogue of the Littlewood--Paley theorem for orthoprojectors onto wavelet subspaces
%J Izvestiya. Mathematics 
%D 2016
%P 557-601
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a6/
%G en
%F IM2_2016_80_3_a6
S. N. Kudryavtsev. An analogue of the Littlewood--Paley theorem for orthoprojectors onto wavelet subspaces. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 557-601. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a6/