Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_3_a5, author = {V. A. Klyachin}, title = {Modified {Delaunay} empty sphere condition in the problem of approximation of the gradient}, journal = {Izvestiya. Mathematics }, pages = {549--556}, publisher = {mathdoc}, volume = {80}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a5/} }
V. A. Klyachin. Modified Delaunay empty sphere condition in the problem of approximation of the gradient. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 549-556. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a5/
[1] A. V. Skvortsov, N. S. Mirza, Algoritmy postroeniya i analiza triangulyatsii, Izd. Tomsk. un-ta, Tomsk, 2006, 168 pp.
[2] V. A. Klyachin, A. A. Shirokii, “Triangulyatsiya Delone mnogomernykh poverkhnostei”, Vestn. SamGU. Estestvennonauchn. ser., 2010, no. 4(78), 51–55
[3] V. A. Klyachin, A. A. Shirokii, “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Math. (Iz. VUZ), 56:1 (2012), 27–34 | DOI | MR | Zbl
[4] V. A. Klyachin, “On a multidimensional analogue of the Schwarz example”, Izv. Math., 76:4 (2012), 681–687 | DOI | DOI | MR | Zbl
[5] B. R. Gelbaum, J. M. H. Olmsted, Counterexamples in analysis, The Mathesis Series, Holden-Day, Inc., San Francisco–London–Amsterdam, 1964, xxiv+194 pp. | MR | Zbl | Zbl
[6] S. N. Borovikov, I. E. Ivanov, I. A. Kryukov, “Modelirovanie prostranstvennykh techenii idealnogo gaza s ispolzovaniem tetraedralnykh setok”, Matem. modelirovanie, 18:8 (2006), 37–48 | Zbl
[7] S. N. Borovikov, I. A. Kryukov, I. E. Ivanov, “Postroenie neregulyarnykh treugolnykh setok na krivolineinykh granyakh na osnove triangulyatsii Delone”, Matem. modelirovanie, 17:8 (2005), 31–45 | MR | Zbl
[8] P. J. Sun, B. Huang, X. M. Wang, “The design of weldment model based on improved Delaunay triangulation algorithm”, Applied Mechanics and Materials, 411–414 (2013), 1414–1418 | DOI
[9] J. L. Synge, The hypercircle in mathematical physics: a method for the approximate solution of boundary value problems, Cambridge Univ. Press, Cambridge, 1957, xii+424 pp. | MR | Zbl
[10] P. Jamet, “Estimations d'erreur pour des elements finis droits presque dégénérées”, Rev. Française Automat. Informat. Recherche Opérationnelle. Analyse Numérique, 10:R-1 (1976), 43–60 | MR | Zbl
[11] Yu. N. Subbotin, “Mnogomernaya kusochno polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii, VTsN, Novosibirsk, 1981, 148–153 | MR | Zbl
[12] Yu. N. Subbotin, “The dependence of estimates of a multidimensional piecewise polynomial approximation on the geometric characteristics of the triangulation”, Proc. Steklov Inst. Math., 189 (1990), 135–159 | MR | Zbl
[13] J. R. Shewchuk, What is a good linear element? Interpolation, conditioning, anisotropy, and quality measures, Department of electrical engineering and computer sciences University of California, Berkeley, CA, 2002, 66 pp. www.cs.berkeley.edu/~jrs/papers/elemj.pdf