Modified Delaunay empty sphere condition in the problem of approximation of the gradient
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 549-556
Voir la notice de l'article provenant de la source Math-Net.Ru
The classical Schwarz example shows that piecewise-linear approximation
of smooth functions does not necessary yield convergence of the
derivatives. However, in the planar case, the required convergence holds
if the triangulation of the grid satisfies the empty sphere
condition (that is, it is a Delaunay triangulation). These results do not extend
to the multidimensional case, as is shown by our published examples.
We give a modified empty sphere condition that also
guarantees the necessary approximation in the multidimensional case.
Keywords:
empty sphere condition, piecewise-linear approximation.
Mots-clés : Delaunay triangulation
Mots-clés : Delaunay triangulation
@article{IM2_2016_80_3_a5,
author = {V. A. Klyachin},
title = {Modified {Delaunay} empty sphere condition in the problem of approximation of the gradient},
journal = {Izvestiya. Mathematics },
pages = {549--556},
publisher = {mathdoc},
volume = {80},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a5/}
}
V. A. Klyachin. Modified Delaunay empty sphere condition in the problem of approximation of the gradient. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 549-556. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a5/