The $p$-adic law of large numbers
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 489-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study limit theorems for sums of independent random variables with values in the field of $p$-adic numbers. We obtain bounds for the rate of convergence in distribution for sums of independent random variables with values in the group of $p$-adic integers.
Keywords: $p$-adic numbers, limit theorems, sum of independent random variables.
@article{IM2_2016_80_3_a2,
     author = {E. I. Zelenov},
     title = {The $p$-adic law of large numbers},
     journal = {Izvestiya. Mathematics },
     pages = {489--499},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a2/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - The $p$-adic law of large numbers
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 489
EP  - 499
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a2/
LA  - en
ID  - IM2_2016_80_3_a2
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T The $p$-adic law of large numbers
%J Izvestiya. Mathematics 
%D 2016
%P 489-499
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a2/
%G en
%F IM2_2016_80_3_a2
E. I. Zelenov. The $p$-adic law of large numbers. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 489-499. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a2/

[1] G. Parisi, “Infinite number of order parameters for spin-glasses”, Phys. Rev. Lett., 43 (1979), 1754–1756 | DOI

[2] M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, M. Virasoro, “Nature of the spin-glass phase”, Phys. Rev. Lett., 52 (1984), 1156–1159 | DOI

[3] V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A, 32:50 (1999), 8785–8791 | DOI | MR | Zbl

[4] V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, “$p$-adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A, 35:2 (2002), 177–189 | DOI | MR | Zbl

[5] V. A. Avetisov, A. Kh. Bikulov, “Ultrametricity of fluctuation dynamic mobility of protein molecules”, Proc. Steklov Inst. Math., 265 (2009), 75–81 | DOI | MR | Zbl

[6] V. A. Avetisov, A. Kh. Bikulov, V. A. Osipov, “$p$-adic models for ultrametric diffusion in conformational dynamics of macromolecules”, Proc. Steklov Inst. Math., 245 (2004), 48–57 | MR | Zbl

[7] B. M. Kloss, “Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, prinimayuschikh znacheniya iz bikompaktnoi gruppy”, Dokl. AN SSSR, 109:3 (1956), 453–455 | Zbl

[8] K. Urbanik, “On the limiting probability distribution on a compact topological group”, Fund. Math., 44 (1957), 253–261 | MR | Zbl

[9] K. Stromberg, “Probabilities on a compact group”, Trans. Amer. Math. Soc., 94:2 (1960), 295–309 | DOI | MR | Zbl

[10] S. Evans, “Local field $U$-statistics”, Algebraic methods in statistics and probability (Notre Dame, IN, 2000), Contemp. Math., 287, Amer. Math. Soc., Providence, RI, 2001, 75–81 | DOI | MR | Zbl

[11] D. S. Mindlin, “Rate of convergence of convolutions of random measures on a compact group”, Theory Probab. Appl., 35:2 (1990), 368–373 | DOI | MR | Zbl

[12] S. Albeverio, W. Karwowski, “Diffusion on $p$-adic numbers”, Gaussian random fields (Nagoya, 1990), Ser. Probab. Statist., 1, World Sci. Publ., River Edge, NJ, 1991, 86–99 | MR | Zbl

[13] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Series on Soviet and East European Mathematics, 1, World Sci. Publ., River Edge, NJ, 1994, xx+319 pp. | DOI | MR | MR | Zbl | Zbl

[14] A. Kh. Bikulov, I. V. Volovich, “$p$-adic Brownian motion”, Izv. Math., 61:3 (1997), 537–552 | DOI | DOI | MR | Zbl

[15] A. Yu. Khrennikov, M. Nilson, $p$-adic deterministic and random dynamics, Math. Appl., 574, Kluwer Acad. Publ., Dordrecht, 2004, xviii+270 pp. | DOI | MR | Zbl

[16] S. N. Evans, “Local fields, Gaussian measures, and Brownian motions”, Topics in probability and Lie groups: boundary theory, CRM Proc. Lecture Notes, 28, Amer. Math. Soc., Providence, RI, 2001, 11–50 | MR | Zbl

[17] A. N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedean fields, Monogr. Textbooks Pure Appl. Math., 244, Marcel Dekker, New York, 2001, xii+316 pp. | DOI | MR | Zbl

[18] I. V. Volovich, “$p$-adic space-time and string theory”, Theoret. and Math. Phys., 71:3 (1987), 574–576 | DOI | MR | Zbl

[19] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[20] S. N. Evans, T. Lidman, “Expectation, conditional expectation and martingales in local fields”, Electron. J. Probab., 12:17 (2007), 498–515 | DOI | MR | Zbl

[21] W. H. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984, viii+306 pp. | MR | Zbl

[22] A. N. Shiryaev, “Probability”, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1995, xvi+623 pp. | DOI | MR | Zbl