Equivariant $K$-theory of regular compactifications: further developments
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 417-441

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the $\widetilde G\times \widetilde G$-equivariant $K$-ring of $X$, where $\widetilde G$ is a factorial covering of a connected complex reductive algebraic group $G$, and $X$ is a regular compactification of $G$. Furthermore, using the description of $K_{\widetilde G\times\widetilde G}(X)$, we describe the ordinary $K$-ring $K(X)$ as a free module (whose rank is equal to the cardinality of the Weyl group) over the $K$-ring of a toric bundle over $G/B$ whose fibre is equal to the toric variety $\overline{T}^{+}$ associated with a smooth subdivision of the positive Weyl chamber. This generalizes our previous work on the wonderful compactification (see [1]). We also give an explicit presentation of $K_{\widetilde G\times\widetilde G}(X)$ and $K(X)$ as algebras over $K_{\widetilde G\times\widetilde G}(\overline{G_{\operatorname{ad}}})$ and $K(\overline{G_{\operatorname{ad}}})$ respectively, where $\overline{G_{\operatorname{ad}}}$ is the wonderful compactification of the adjoint semisimple group $G_{\operatorname{ad}}$. In the case when $X$ is a regular compactification of $G_{\operatorname{ad}}$, we give a geometric interpretation of these presentations in terms of the equivariant and ordinary Grothendieck rings of a canonical toric bundle over $\overline{G_{\operatorname{ad}}}$.
Keywords: equivariant $K$-theory, regular compactification, wonderful compactification, toric bundle.
@article{IM2_2016_80_2_a7,
     author = {V. Uma},
     title = {Equivariant $K$-theory of regular compactifications: further developments},
     journal = {Izvestiya. Mathematics },
     pages = {417--441},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a7/}
}
TY  - JOUR
AU  - V. Uma
TI  - Equivariant $K$-theory of regular compactifications: further developments
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 417
EP  - 441
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a7/
LA  - en
ID  - IM2_2016_80_2_a7
ER  - 
%0 Journal Article
%A V. Uma
%T Equivariant $K$-theory of regular compactifications: further developments
%J Izvestiya. Mathematics 
%D 2016
%P 417-441
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a7/
%G en
%F IM2_2016_80_2_a7
V. Uma. Equivariant $K$-theory of regular compactifications: further developments. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 417-441. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a7/