Almost-periodic solutions of discrete equations
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 403-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-linear almost-periodic discrete equations in a metric space that have solutions with precompact sets of values. By using an auxiliary functional $\delta$ defined on the set of such solutions, we obtain conditions for the almost periodicity of these solutions, which, in contrast to the classical papers of Favard and Amerio, do not use the ${\mathscr H}$-classes of the equations under consideration. We conduct similar studies for linear almost-periodic and non-linear Poisson-stable discrete equations.
Keywords: almost-periodic solutions, discrete equations in a metric space.
@article{IM2_2016_80_2_a6,
     author = {V. E. Slyusarchuk},
     title = {Almost-periodic solutions of discrete equations},
     journal = {Izvestiya. Mathematics },
     pages = {403--416},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Almost-periodic solutions of discrete equations
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 403
EP  - 416
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/
LA  - en
ID  - IM2_2016_80_2_a6
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Almost-periodic solutions of discrete equations
%J Izvestiya. Mathematics 
%D 2016
%P 403-416
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/
%G en
%F IM2_2016_80_2_a6
V. E. Slyusarchuk. Almost-periodic solutions of discrete equations. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 403-416. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/

[1] S. Bochner, “Beiträge zur Theorie der fastperiodischen Funktionen. I. Funktionen einer Variablen”, Math. Ann., 96:1 (1927), 119–147 | DOI | MR | Zbl

[2] S. Bochner, “Beiträge zur Theorie der fastperiodischen Funktionen. II. Funktionen mehrerer Variablen”, Math. Ann., 96:1 (1927), 383–409 | DOI | MR | Zbl

[3] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl

[4] È. Mukhamadiev, “On the inversion of functional operators in a space of functions bounded on the axes”, Math. Notes, 11:3 (1972), 169–172 | DOI | MR | Zbl

[5] È. Mukhamadiev, “Investigations in the theory of bounded and periodic solutions of differential equations”, Math. Notes, 30:3 (1981), 713–722 | DOI | MR | Zbl

[6] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, N.Y., 1957, 1961, ix+129, ix+128 pp. | MR | MR | MR | Zbl | Zbl

[7] L. Amerio, “Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasi-periodici, o limitati”, Ann. Mat. Pura Appl. (4), 39 (1955), 97–119 | DOI | MR | Zbl

[8] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR | Zbl

[9] V. Yu. Slyusarchuk, “Conditions of almost periodicity for bounded solutions of nonlinear difference equations with continuous argument”, J. Math. Sci. (N. Y.), 197:1 (2014), 122–128 | DOI | MR | Zbl

[10] V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear differential equations in Banach spaces”, Ukrainian Math. J., 65:2 (2013), 341–347 | DOI | MR | Zbl

[11] V. Yu. Slyusarchuk, “Kriterii isnuvannya maizhe periodichnikh rozv'yazkiv neliniinikh rivnyan, scho ne vikoristovue $\mathcal{H}$-klasi tsikh rivnyan”, Bukovinskii matem. zhurn., 1:1-2 (2013), 136–138 | Zbl

[12] V. Yu. Slyusarchuk, “Doslidzhennya maizhe periodichnikh riznitsevikh rivnyan z neperervnim argumentom, scho ne vikoristovue $\mathcal{H}$-klasi tsikh rivnyan”, Bukovinskii matem. zhurn., 1:3-4 (2013), 137–143 | Zbl

[13] V. E. Slyusarchuk, “Conditions for the existence of almost-periodic solutions of nonlinear difference equations in Banach space”, Math. Notes, 97:2 (2015), 268–274 | DOI | DOI | MR | Zbl

[14] V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear difference equations with discrete argument”, J. Math. Sci. (N. Y.), 201:3 (2014), 391–399 | DOI | MR | Zbl

[15] V. Yu. Slyusarchuk, “Conditions for almost periodicity of bounded solutions of nonlinear differential equations unsolved with respect to the derivative”, Ukrainian Math. J., 66:3 (2014), 432–442 | DOI | MR | Zbl

[16] V. E. Slyusarchuk, “Conditions for almost periodicity of bounded solutions of non-linear differential-difference equations”, Izv. Math., 78:6 (2014), 1232–1243 | DOI | DOI | MR | Zbl

[17] J. Favard, “Sur les équations différentielles linéaires à coefficients presque-périodiques”, Acta Math., 51:1 (1927), 31–81 | DOI | MR | Zbl

[18] V. E. Slyusarchuk, “Invertibility of almost periodic $c$-continuous functional operators”, Math. USSR-Sb., 44:4 (1983), 431–446 | DOI | MR | Zbl

[19] V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators”, Math. USSR-Sb., 58:1 (1987), 83–100 | DOI | MR | Zbl

[20] V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of nonautonomous functional-differential operators”, Math. Notes, 42:2 (1987), 648–651 | DOI | MR | Zbl

[21] L. Amerio, “Sulle equazioni differenziali quasi-periodiche astratte”, Ricerche Mat., 9 (1960), 255–274 | MR | Zbl

[22] V. V. Zhikov, “Proof of the Favard theorem on the existence of almost-periodic solution for an arbitrary Banach space”, Math. Notes, 23:1 (1978), 66–69 | DOI | MR | Zbl

[23] G. Bruno, A. Pankov, Y. Tverdokhleb, “On almost-periodic operators in the spaces of sequences”, Acta Appl. Math., 65:1-3 (2001), 153–167 | DOI | MR | Zbl

[24] R. K. Romanovskii, L. V. Belgart, “The exponential dichotomy of solutions to systems of linear difference equations with almost periodic coefficients”, Russian Math. (Iz. VUZ), 54:10 (2010), 44–51 | DOI | MR | Zbl

[25] V. E. Slyusarchuk, “Necessary and sufficient conditions for existence and uniqueness of bounded and almost-periodic solutions of nonlinear differential equations”, Acta Appl. Math., 65:1-3 (2001), 333–341 | DOI | MR | Zbl

[26] B. A. Scherbakov, Ustoichivost po Puassonu dvizhenii dinamicheskikh sistem i reshenii differentsialnykh uravnenii, Shtiintsa, Kishinev, 1985, 148 pp. | MR | Zbl

[27] D. N. Cheban, “Asymptotically almost periodic solutions of differential equations”, Hindawi Publishing Corporation, New York, 2009, x+186 pp. | MR | Zbl

[28] V. E. Slyusarchuk, “Obratimost ustoichivykh po Puassonu funktsionalnykh operatorov”, Nekotorye voprosy teorii asimptoticheskikh metodov nelineinoi mekhaniki, Izd-vo IM AN USSR, Kiev, 1986, 173–174 | Zbl