Almost-periodic solutions of discrete equations
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 403-416

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-linear almost-periodic discrete equations in a metric space that have solutions with precompact sets of values. By using an auxiliary functional $\delta$ defined on the set of such solutions, we obtain conditions for the almost periodicity of these solutions, which, in contrast to the classical papers of Favard and Amerio, do not use the ${\mathscr H}$-classes of the equations under consideration. We conduct similar studies for linear almost-periodic and non-linear Poisson-stable discrete equations.
Keywords: almost-periodic solutions, discrete equations in a metric space.
@article{IM2_2016_80_2_a6,
     author = {V. E. Slyusarchuk},
     title = {Almost-periodic solutions of discrete equations},
     journal = {Izvestiya. Mathematics },
     pages = {403--416},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Almost-periodic solutions of discrete equations
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 403
EP  - 416
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/
LA  - en
ID  - IM2_2016_80_2_a6
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Almost-periodic solutions of discrete equations
%J Izvestiya. Mathematics 
%D 2016
%P 403-416
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/
%G en
%F IM2_2016_80_2_a6
V. E. Slyusarchuk. Almost-periodic solutions of discrete equations. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 403-416. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/