Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_2_a6, author = {V. E. Slyusarchuk}, title = {Almost-periodic solutions of discrete equations}, journal = {Izvestiya. Mathematics }, pages = {403--416}, publisher = {mathdoc}, volume = {80}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/} }
V. E. Slyusarchuk. Almost-periodic solutions of discrete equations. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 403-416. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a6/
[1] S. Bochner, “Beiträge zur Theorie der fastperiodischen Funktionen. I. Funktionen einer Variablen”, Math. Ann., 96:1 (1927), 119–147 | DOI | MR | Zbl
[2] S. Bochner, “Beiträge zur Theorie der fastperiodischen Funktionen. II. Funktionen mehrerer Variablen”, Math. Ann., 96:1 (1927), 383–409 | DOI | MR | Zbl
[3] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl
[4] È. Mukhamadiev, “On the inversion of functional operators in a space of functions bounded on the axes”, Math. Notes, 11:3 (1972), 169–172 | DOI | MR | Zbl
[5] È. Mukhamadiev, “Investigations in the theory of bounded and periodic solutions of differential equations”, Math. Notes, 30:3 (1981), 713–722 | DOI | MR | Zbl
[6] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, N.Y., 1957, 1961, ix+129, ix+128 pp. | MR | MR | MR | Zbl | Zbl
[7] L. Amerio, “Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasi-periodici, o limitati”, Ann. Mat. Pura Appl. (4), 39 (1955), 97–119 | DOI | MR | Zbl
[8] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR | Zbl
[9] V. Yu. Slyusarchuk, “Conditions of almost periodicity for bounded solutions of nonlinear difference equations with continuous argument”, J. Math. Sci. (N. Y.), 197:1 (2014), 122–128 | DOI | MR | Zbl
[10] V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear differential equations in Banach spaces”, Ukrainian Math. J., 65:2 (2013), 341–347 | DOI | MR | Zbl
[11] V. Yu. Slyusarchuk, “Kriterii isnuvannya maizhe periodichnikh rozv'yazkiv neliniinikh rivnyan, scho ne vikoristovue $\mathcal{H}$-klasi tsikh rivnyan”, Bukovinskii matem. zhurn., 1:1-2 (2013), 136–138 | Zbl
[12] V. Yu. Slyusarchuk, “Doslidzhennya maizhe periodichnikh riznitsevikh rivnyan z neperervnim argumentom, scho ne vikoristovue $\mathcal{H}$-klasi tsikh rivnyan”, Bukovinskii matem. zhurn., 1:3-4 (2013), 137–143 | Zbl
[13] V. E. Slyusarchuk, “Conditions for the existence of almost-periodic solutions of nonlinear difference equations in Banach space”, Math. Notes, 97:2 (2015), 268–274 | DOI | DOI | MR | Zbl
[14] V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear difference equations with discrete argument”, J. Math. Sci. (N. Y.), 201:3 (2014), 391–399 | DOI | MR | Zbl
[15] V. Yu. Slyusarchuk, “Conditions for almost periodicity of bounded solutions of nonlinear differential equations unsolved with respect to the derivative”, Ukrainian Math. J., 66:3 (2014), 432–442 | DOI | MR | Zbl
[16] V. E. Slyusarchuk, “Conditions for almost periodicity of bounded solutions of non-linear differential-difference equations”, Izv. Math., 78:6 (2014), 1232–1243 | DOI | DOI | MR | Zbl
[17] J. Favard, “Sur les équations différentielles linéaires à coefficients presque-périodiques”, Acta Math., 51:1 (1927), 31–81 | DOI | MR | Zbl
[18] V. E. Slyusarchuk, “Invertibility of almost periodic $c$-continuous functional operators”, Math. USSR-Sb., 44:4 (1983), 431–446 | DOI | MR | Zbl
[19] V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators”, Math. USSR-Sb., 58:1 (1987), 83–100 | DOI | MR | Zbl
[20] V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of nonautonomous functional-differential operators”, Math. Notes, 42:2 (1987), 648–651 | DOI | MR | Zbl
[21] L. Amerio, “Sulle equazioni differenziali quasi-periodiche astratte”, Ricerche Mat., 9 (1960), 255–274 | MR | Zbl
[22] V. V. Zhikov, “Proof of the Favard theorem on the existence of almost-periodic solution for an arbitrary Banach space”, Math. Notes, 23:1 (1978), 66–69 | DOI | MR | Zbl
[23] G. Bruno, A. Pankov, Y. Tverdokhleb, “On almost-periodic operators in the spaces of sequences”, Acta Appl. Math., 65:1-3 (2001), 153–167 | DOI | MR | Zbl
[24] R. K. Romanovskii, L. V. Belgart, “The exponential dichotomy of solutions to systems of linear difference equations with almost periodic coefficients”, Russian Math. (Iz. VUZ), 54:10 (2010), 44–51 | DOI | MR | Zbl
[25] V. E. Slyusarchuk, “Necessary and sufficient conditions for existence and uniqueness of bounded and almost-periodic solutions of nonlinear differential equations”, Acta Appl. Math., 65:1-3 (2001), 333–341 | DOI | MR | Zbl
[26] B. A. Scherbakov, Ustoichivost po Puassonu dvizhenii dinamicheskikh sistem i reshenii differentsialnykh uravnenii, Shtiintsa, Kishinev, 1985, 148 pp. | MR | Zbl
[27] D. N. Cheban, “Asymptotically almost periodic solutions of differential equations”, Hindawi Publishing Corporation, New York, 2009, x+186 pp. | MR | Zbl
[28] V. E. Slyusarchuk, “Obratimost ustoichivykh po Puassonu funktsionalnykh operatorov”, Nekotorye voprosy teorii asimptoticheskikh metodov nelineinoi mekhaniki, Izd-vo IM AN USSR, Kiev, 1986, 173–174 | Zbl