Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_2_a4, author = {V. V. Kozlov}, title = {Invariant measures of smooth dynamical systems, generalized functions and summation methods}, journal = {Izvestiya. Mathematics }, pages = {342--358}, publisher = {mathdoc}, volume = {80}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a4/} }
V. V. Kozlov. Invariant measures of smooth dynamical systems, generalized functions and summation methods. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 342-358. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a4/
[1] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl
[2] P. R. Halmos, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, 3, Math. Soc. Japan, Tokyo, 1956, vii+99 pp. | MR | Zbl | Zbl
[3] A. N. Kolmogorov, “On dynamical systems with an integral invariant on a torus”, Selected works, vol. I: Mathematics and mechanics, Kluwer, Dordrecht, 1991, 344–348 | MR | Zbl | Zbl
[4] D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Math. USSR-Izv., 7:6 (1973), 1257–1271 | DOI | MR | Zbl
[5] A. Ya. Gordon, “Sufficient condition for unsolvability of the additive functional homological equation connected with the ergodic rotation of a circle”, Funct. Anal. Appl., 9:4 (1975), 334–336 | DOI | MR | Zbl
[6] V. V. Kozlov, “Integrability and non-integrability in Hamiltonian mechanics”, Russian Math. Surveys, 38:1 (1983), 1–76 | DOI | MR | Zbl
[7] N. G. Moshchevitin, “Existence and smoothness of the integral of a Hamiltonian system of a certain form”, Math. Notes, 49:5 (1991), 498–501 | DOI | MR | Zbl
[8] C. Grebogi, E. Ott, S. Pelikan, J. A. Yorke, “Strange attractors that are not chaotic”, Phys. D, 13:1-2 (1984), 261–268 | DOI | MR | Zbl
[9] V. V. Kozlov, “On integrals of quasiperiodic functions”, Mosc. Univ. Mech. Bull., 33:1-2 (1978), 31–38 | MR | Zbl
[10] U. Feudel, S. Kuznetsov, A. Pikovsky, Strange nonchaotic attractors. Dynamics between order and chaos in quasiperiodically forced systems, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006, xii+213 pp. | MR | Zbl
[11] J. C. Sprott, Elegant chaos. Algebraically simple chaotic flows, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010, xv+285 pp. | MR | Zbl
[12] D. Topaj, A. Pikovsky, “Reversibility vs. synchronization in oscillator lattices”, Phys. D, 170:2 (2002), 118–130 | DOI | MR | Zbl
[13] V. V. Kozlov, “On the existence of an integral invariant of a smooth dynamic system”, J. Appl. Math. Mech., 51:4 (1987), 420–426 | DOI | MR | Zbl
[14] Ya. G. Sinai, Introduction to ergodic theory, Math. Notes, 18, Princeton Univ. Press, Princeton, NJ, 1976, 144 pp. | MR | Zbl
[15] O. Veblen, Invariants of quadratic differential forms, Cambridge Tracts in Mathematics and Mathematical Physics, 24, Cambridge Univ. Press, Cambridge, 1927, viii+102 pp. | Zbl
[16] P. K. Rashevskii, Geometricheskaya teoriya uravnenii s chastnymi proizvodnymi, Gostekhizdat, M.–L., 1947, 354 pp. | MR | Zbl
[17] V. Arnol'd, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, M., 1980, 324 pp. | MR | MR | Zbl | Zbl
[18] G. H. Hardy, Divergent series, Oxford, Clarendon Press, 1949, xvi+396 pp. | MR | MR | Zbl
[19] V. V. Kozlov, “Uniform distribution on a torus”, Mosc. Univ. Math. Bull., 59:2 (2004), 23–31 | MR | Zbl
[20] A. Yu. Obolenskii, Lektsii po kachestvennoi teorii differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, In-t kompyuternykh issledovanii, M.–Izhevsk, 2006, 320 pp.
[21] N. Bourbaki, Éléments de mathématique. Première partie: Les structures fondamentales de l'analyse. Livre V: Espaces vectoriels topologiques, Ch. I–V, v. XV, XVIII, XIX, Actualités Sci. Indust., 1189, 1229, 1230, Hermann, Paris, 1953, 1955, 1955, 123 pp., 190 pp., ii+391 pp. | MR | Zbl
[22] O. Zubelevich, “Several notes on existence theorem of Peano”, Funkcial. Ekvac., 55:1 (2012), 89–97 | DOI | MR | Zbl
[23] V. V. Kozlov, “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR
[24] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1-2 (2011), 104–116 | DOI | MR | Zbl