Fundamental aspects of vector-valued Banach limits
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 316-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is divided into four parts. In the first we study the existence of vector-valued Banach limits and show that a real Banach space with a monotone Schauder basis admits vector-valued Banach limits if and only if it is $1$-complemented in its bidual. In the second we prove two vector-valued versions of Lorentz' intrinsic characterization of almost convergence. In the third we show that the unit sphere in the space of all continuous linear operators from $\ell_\infty(X)$ to $X$ which are invariant under the shift operator on $\ell_\infty(X)$ cannot be obtained via compositions of surjective linear isometries with vector-valued Banach limits. In the final part we show that if $X$ enjoys the Krein–Milman property, then the set of vector-valued Banach limits is a face of the unit ball in the space of all continuous linear operators from $\ell_\infty(X)$ to $X$ which are invariant under the shift operator on $\ell_\infty(X)$.
Keywords: Banach limit, almost convergence, group of isometries, extremal structure.
@article{IM2_2016_80_2_a2,
     author = {F. J. Garcia-Pacheco and F. J. Perez-Fernandez},
     title = {Fundamental aspects of vector-valued {Banach} limits},
     journal = {Izvestiya. Mathematics },
     pages = {316--328},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a2/}
}
TY  - JOUR
AU  - F. J. Garcia-Pacheco
AU  - F. J. Perez-Fernandez
TI  - Fundamental aspects of vector-valued Banach limits
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 316
EP  - 328
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a2/
LA  - en
ID  - IM2_2016_80_2_a2
ER  - 
%0 Journal Article
%A F. J. Garcia-Pacheco
%A F. J. Perez-Fernandez
%T Fundamental aspects of vector-valued Banach limits
%J Izvestiya. Mathematics 
%D 2016
%P 316-328
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a2/
%G en
%F IM2_2016_80_2_a2
F. J. Garcia-Pacheco; F. J. Perez-Fernandez. Fundamental aspects of vector-valued Banach limits. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 316-328. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a2/

[1] S. Banach, Théorie des opérations linéaires, AMS Chelsea Publishing, New York, 1978, 259 pp. | MR | Zbl

[2] E. A. Alekhno, “Superposition operator on the space of sequences almost converging to zero”, Cent. Eur. J. Math., 10:2 (2012), 619–645 | DOI | MR | Zbl

[3] E. Semenov, F. Sukochev, “Extreme points of the set of Banach limits”, Positivity, 17:1 (2013), 163–170 | DOI | MR | Zbl

[4] E. M. Semenov, F. A. Sukochev, “Invariant Banach limits and applications”, J. Funct. Anal., 259:6 (2010), 1517–1541 | DOI | MR | Zbl

[5] E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Structural properties of the set of Banach limits”, Dokl. Math., 84:3 (2011), 802–803 | MR | Zbl

[6] E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Geometric properties of the set of Banach limits”, Izv. Math., 78:3 (2014), 596–620 | DOI | DOI | MR | Zbl

[7] R. Armario, F. J. García-Pacheco, F. J. Pérez-Fernández, “On vector-valued Banach limits”, Funct. Anal. Appl., 47:4 (2013), 315–318 | DOI | DOI | MR | Zbl

[8] A. Aizpuru, R. Armario, F. J. García-Pacheco, F. J. Pérez-Fernández, “Banach limits and uniform almost summability”, J. Math. Anal. Appl., 379:1 (2011), 82–90 | DOI | MR | Zbl

[9] G. G. Lorentz, “A contribution to the theory of divergent sequences”, Acta Math., 80 (1948), 167–190 | DOI | MR | Zbl

[10] J. Boos, Classical and modern methods in summability, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2000, xiv+586 pp. | MR | Zbl

[11] H. P. Rosenthal, “On injective Banach spaces and the spaces $C(S)$”, Bull. Amer. Math. Soc., 75:4 (1969), 824–828 | DOI | MR | Zbl

[12] J. Wolfe, “Injective Banach spaces of continuous functions”, Trans. Amer. Math. Soc., 235 (1978), 115–139 | DOI | MR | Zbl

[13] Yu. A. Abramovich, C. D. Aliprantis, An invitation to operator theory, Grad. Stud. Math., 50, Amer. Math. Soc., Providence, RI, 2002, xiv+530 pp. | DOI | MR | Zbl

[14] A. Aizpuru, R. Armario, F. J. García-Pacheco, F. J. Pérez-Fernández, “Vector-valued almost convergence and classical properties in normed spaces”, Proc. Indian Acad. Sci. Math., 124:1 (2014), 93–108 | DOI | MR | Zbl