Fundamental aspects of vector-valued Banach limits
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 316-328

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is divided into four parts. In the first we study the existence of vector-valued Banach limits and show that a real Banach space with a monotone Schauder basis admits vector-valued Banach limits if and only if it is $1$-complemented in its bidual. In the second we prove two vector-valued versions of Lorentz' intrinsic characterization of almost convergence. In the third we show that the unit sphere in the space of all continuous linear operators from $\ell_\infty(X)$ to $X$ which are invariant under the shift operator on $\ell_\infty(X)$ cannot be obtained via compositions of surjective linear isometries with vector-valued Banach limits. In the final part we show that if $X$ enjoys the Krein–Milman property, then the set of vector-valued Banach limits is a face of the unit ball in the space of all continuous linear operators from $\ell_\infty(X)$ to $X$ which are invariant under the shift operator on $\ell_\infty(X)$.
Keywords: Banach limit, almost convergence, group of isometries, extremal structure.
@article{IM2_2016_80_2_a2,
     author = {F. J. Garcia-Pacheco and F. J. Perez-Fernandez},
     title = {Fundamental aspects of vector-valued {Banach} limits},
     journal = {Izvestiya. Mathematics },
     pages = {316--328},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a2/}
}
TY  - JOUR
AU  - F. J. Garcia-Pacheco
AU  - F. J. Perez-Fernandez
TI  - Fundamental aspects of vector-valued Banach limits
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 316
EP  - 328
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a2/
LA  - en
ID  - IM2_2016_80_2_a2
ER  - 
%0 Journal Article
%A F. J. Garcia-Pacheco
%A F. J. Perez-Fernandez
%T Fundamental aspects of vector-valued Banach limits
%J Izvestiya. Mathematics 
%D 2016
%P 316-328
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a2/
%G en
%F IM2_2016_80_2_a2
F. J. Garcia-Pacheco; F. J. Perez-Fernandez. Fundamental aspects of vector-valued Banach limits. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 316-328. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a2/