Infinite determinantal measures and the ergodic decomposition of infinite
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 299-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

The second paper in this series is devoted to the convergence of sequences of infinite determinantal measures, understood as the convergence of sequences of the corresponding finite determinantal measures. Besides the weak topology in the space of probability measures on the space of configurations, we also consider the natural immersion (defined almost surely with respect to the infinite Bessel process) of the space of configurations into the space of finite measures on the half-line, which induces a weak topology in the space of finite measures on the space of finite measures on the half-line. The main results of the present paper are sufficient conditions for the tightness of families and the convergence of sequences of induced determinantal processes as well as for the convergence of processes corresponding to finite-rank perturbations of operators.
Keywords: determinantal processes, infinite determinantal measures, ergodic decomposition, infinite-dimensional harmonic analysis, infinite unitary group, scaling limits, Jacobi polynomials, Harish-Chandra–Itzykson–Zuber orbit integral.
@article{IM2_2016_80_2_a1,
     author = {A. I. Bufetov},
     title = {Infinite determinantal measures and the ergodic decomposition of infinite},
     journal = {Izvestiya. Mathematics },
     pages = {299--315},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/}
}
TY  - JOUR
AU  - A. I. Bufetov
TI  - Infinite determinantal measures and the ergodic decomposition of infinite
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 299
EP  - 315
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/
LA  - en
ID  - IM2_2016_80_2_a1
ER  - 
%0 Journal Article
%A A. I. Bufetov
%T Infinite determinantal measures and the ergodic decomposition of infinite
%J Izvestiya. Mathematics 
%D 2016
%P 299-315
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/
%G en
%F IM2_2016_80_2_a1
A. I. Bufetov. Infinite determinantal measures and the ergodic decomposition of infinite. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 299-315. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/

[1] A. I. Bufetov, “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group”, Sb. Math., 205:2 (2014), 192–219 ; arXiv: 1105.0664 | DOI | DOI | MR | Zbl

[2] A. I. Bufetov, “Finiteness of ergodic unitarily invariant measures on spaces of infinite matrices”, Ann. Inst. Fourier (Grenoble), 64:3 (2014), 893–907 ; arXiv: 1108.2737 | DOI | MR | Zbl

[3] D. Pickrell, “Measures on infinite dimensional Grassmann manifolds”, J. Funct. Anal., 70:2 (1987), 323–356 | DOI | MR | Zbl

[4] A. I. Bufetov, Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures, Izv. Math., 79, no. 6, 2015 | DOI | DOI | MR

[5] A. I. Bufetov, “Beskonechnye determinantnye mery i ergodicheskoe razlozhenie beskonechnykh mer Pikrella. III”, Izv. RAN. Ser. matem., 2016 (to appear)

[6] D. J. Daley, D. Vere-Jones, An introduction to the theory of point processes, v. I, Probab. Appl. (N. Y.), Elementary theory and methods, 2nd ed., Springer-Verlag, New York, 2003, xxii+469 pp. ; v. II, General theory and structure, 2008, xvii+573 pp. | DOI | MR | Zbl | DOI | Zbl

[7] D. M. Pickrell, “Mackey analysis of infinite classical motion groups”, Pacific J. Math., 150:1 (1991), 139–166 | DOI | MR | Zbl

[8] D. Pickrell, “Separable representations of automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90 (1990), 1–26 | DOI | MR | Zbl

[9] A. I. Bufetov, “Multiplicative functionals of determinantal processes”, Russian Math. Surveys, 67:1 (2012), 181–182 | DOI | DOI | MR | Zbl

[10] A. Lenard, “States of classical statistical mechanical systems of infinitely many particles. I”, Arch. Rational Mech. Anal., 59:3 (1975), 219–239 | DOI | MR

[11] A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123 | DOI | MR | Zbl

[12] A. Borodin, “Determinantal point processes”, The Oxford handbook of random matrix theory, Oxford Univ. Press, Oxford, 2011, 231–249 | MR | Zbl

[13] J. Ben Hough, M. Krishnapur, Y. Peres, B. Virág, “Determinantal processes and independence”, Probab. Surv., 3 (2006), 206–229 | DOI | MR | Zbl

[14] R. Lyons, “Determinantal probability measures”, Publ. Math. Inst. Hautes Études Sci., 98 (2003), 167–212 | DOI | MR | Zbl

[15] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes”, J. Funct. Anal., 205:2 (2003), 414–463 | DOI | MR | Zbl

[16] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties”, Ann. Probab., 31:3 (2003), 1533–1564 | DOI | MR | Zbl

[17] T. Shirai, Y. Takahashi, “Random point fields associated with fermion, boson and other statistics”, Stochastic analysis on large scale interacting systems, Adv. Stud. Pure Math., 39, Math. Soc. Japan, Tokyo, 2004, 345–354 | MR | Zbl

[18] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1–4, Mir, M., 1977, 1978, 1982, 1982, 357 s., 395 s., 445 s., 430 pp. ; M. Reed, B. Simon, Methods of modern mathematical physics, т. I, 2nd ed., Academic Press, Inc., New York–London, 1980, xv+400 с. ; v. II–IV, 1st ed., 1975, 1979, 1978, xv+361 pp., xv+463 pp., xv+396 pp. | MR | MR | MR | MR | Zbl | MR | Zbl | MR | MR | MR | Zbl

[19] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[20] A. I. Bufetov, “Infinite determinantal measures”, Electron. Res. Announc. Math. Sci., 20 (2013), 12–20 | DOI | MR | Zbl

[21] B. Simon, Trace class ideals, Amer. Math. Soc., Providence, RI, 2011

[22] C. A. Tracy, H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309 | DOI | MR | Zbl

[23] V. I. Bogachev, Measure theory, v. II, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl

[24] O. Macchi, “The coincidence approach to stochastic point processes”, Adv. in Appl. Probab., 7 (1975), 83–122 | DOI | MR | Zbl

[25] A. Soshnikov, “Determinantal random point fields”, Russian Math. Surveys, 55:5 (2000), 923–975 | DOI | DOI | MR | Zbl