Infinite determinantal measures and the ergodic decomposition of infinite
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 299-315

Voir la notice de l'article provenant de la source Math-Net.Ru

The second paper in this series is devoted to the convergence of sequences of infinite determinantal measures, understood as the convergence of sequences of the corresponding finite determinantal measures. Besides the weak topology in the space of probability measures on the space of configurations, we also consider the natural immersion (defined almost surely with respect to the infinite Bessel process) of the space of configurations into the space of finite measures on the half-line, which induces a weak topology in the space of finite measures on the space of finite measures on the half-line. The main results of the present paper are sufficient conditions for the tightness of families and the convergence of sequences of induced determinantal processes as well as for the convergence of processes corresponding to finite-rank perturbations of operators.
Keywords: determinantal processes, infinite determinantal measures, ergodic decomposition, infinite-dimensional harmonic analysis, infinite unitary group, scaling limits, Jacobi polynomials, Harish-Chandra–Itzykson–Zuber orbit integral.
@article{IM2_2016_80_2_a1,
     author = {A. I. Bufetov},
     title = {Infinite determinantal measures and the ergodic decomposition of infinite},
     journal = {Izvestiya. Mathematics },
     pages = {299--315},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/}
}
TY  - JOUR
AU  - A. I. Bufetov
TI  - Infinite determinantal measures and the ergodic decomposition of infinite
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 299
EP  - 315
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/
LA  - en
ID  - IM2_2016_80_2_a1
ER  - 
%0 Journal Article
%A A. I. Bufetov
%T Infinite determinantal measures and the ergodic decomposition of infinite
%J Izvestiya. Mathematics 
%D 2016
%P 299-315
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/
%G en
%F IM2_2016_80_2_a1
A. I. Bufetov. Infinite determinantal measures and the ergodic decomposition of infinite. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 299-315. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/