Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_2_a1, author = {A. I. Bufetov}, title = {Infinite determinantal measures and the ergodic decomposition of infinite}, journal = {Izvestiya. Mathematics }, pages = {299--315}, publisher = {mathdoc}, volume = {80}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/} }
A. I. Bufetov. Infinite determinantal measures and the ergodic decomposition of infinite. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 299-315. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a1/
[1] A. I. Bufetov, “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group”, Sb. Math., 205:2 (2014), 192–219 ; arXiv: 1105.0664 | DOI | DOI | MR | Zbl
[2] A. I. Bufetov, “Finiteness of ergodic unitarily invariant measures on spaces of infinite matrices”, Ann. Inst. Fourier (Grenoble), 64:3 (2014), 893–907 ; arXiv: 1108.2737 | DOI | MR | Zbl
[3] D. Pickrell, “Measures on infinite dimensional Grassmann manifolds”, J. Funct. Anal., 70:2 (1987), 323–356 | DOI | MR | Zbl
[4] A. I. Bufetov, Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures, Izv. Math., 79, no. 6, 2015 | DOI | DOI | MR
[5] A. I. Bufetov, “Beskonechnye determinantnye mery i ergodicheskoe razlozhenie beskonechnykh mer Pikrella. III”, Izv. RAN. Ser. matem., 2016 (to appear)
[6] D. J. Daley, D. Vere-Jones, An introduction to the theory of point processes, v. I, Probab. Appl. (N. Y.), Elementary theory and methods, 2nd ed., Springer-Verlag, New York, 2003, xxii+469 pp. ; v. II, General theory and structure, 2008, xvii+573 pp. | DOI | MR | Zbl | DOI | Zbl
[7] D. M. Pickrell, “Mackey analysis of infinite classical motion groups”, Pacific J. Math., 150:1 (1991), 139–166 | DOI | MR | Zbl
[8] D. Pickrell, “Separable representations of automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90 (1990), 1–26 | DOI | MR | Zbl
[9] A. I. Bufetov, “Multiplicative functionals of determinantal processes”, Russian Math. Surveys, 67:1 (2012), 181–182 | DOI | DOI | MR | Zbl
[10] A. Lenard, “States of classical statistical mechanical systems of infinitely many particles. I”, Arch. Rational Mech. Anal., 59:3 (1975), 219–239 | DOI | MR
[11] A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123 | DOI | MR | Zbl
[12] A. Borodin, “Determinantal point processes”, The Oxford handbook of random matrix theory, Oxford Univ. Press, Oxford, 2011, 231–249 | MR | Zbl
[13] J. Ben Hough, M. Krishnapur, Y. Peres, B. Virág, “Determinantal processes and independence”, Probab. Surv., 3 (2006), 206–229 | DOI | MR | Zbl
[14] R. Lyons, “Determinantal probability measures”, Publ. Math. Inst. Hautes Études Sci., 98 (2003), 167–212 | DOI | MR | Zbl
[15] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes”, J. Funct. Anal., 205:2 (2003), 414–463 | DOI | MR | Zbl
[16] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties”, Ann. Probab., 31:3 (2003), 1533–1564 | DOI | MR | Zbl
[17] T. Shirai, Y. Takahashi, “Random point fields associated with fermion, boson and other statistics”, Stochastic analysis on large scale interacting systems, Adv. Stud. Pure Math., 39, Math. Soc. Japan, Tokyo, 2004, 345–354 | MR | Zbl
[18] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1–4, Mir, M., 1977, 1978, 1982, 1982, 357 s., 395 s., 445 s., 430 pp. ; M. Reed, B. Simon, Methods of modern mathematical physics, т. I, 2nd ed., Academic Press, Inc., New York–London, 1980, xv+400 с. ; v. II–IV, 1st ed., 1975, 1979, 1978, xv+361 pp., xv+463 pp., xv+396 pp. | MR | MR | MR | MR | Zbl | MR | Zbl | MR | MR | MR | Zbl
[19] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl
[20] A. I. Bufetov, “Infinite determinantal measures”, Electron. Res. Announc. Math. Sci., 20 (2013), 12–20 | DOI | MR | Zbl
[21] B. Simon, Trace class ideals, Amer. Math. Soc., Providence, RI, 2011
[22] C. A. Tracy, H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309 | DOI | MR | Zbl
[23] V. I. Bogachev, Measure theory, v. II, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl
[24] O. Macchi, “The coincidence approach to stochastic point processes”, Adv. in Appl. Probab., 7 (1975), 83–122 | DOI | MR | Zbl
[25] A. Soshnikov, “Determinantal random point fields”, Russian Math. Surveys, 55:5 (2000), 923–975 | DOI | DOI | MR | Zbl