Newton polytopes and irreducible components of complete intersections
Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 263-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the number of irreducible components of varieties in $(\mathbb C^*)^n$ determined by generic systems of equations with given Newton polytopes. Every such component can in its turn be given by a generic system of equations whose Newton polytopes are found explicitly. It is known that many discrete invariants of a variety can be found in terms of the Newton polytopes. Our results enable one to calculate such invariants for each irreducible component of the variety.
Keywords: Newton polytopes, mixed volume, irreducible components, holomorphic forms.
@article{IM2_2016_80_1_a8,
     author = {A. G. Khovanskii},
     title = {Newton polytopes and irreducible components of complete intersections},
     journal = {Izvestiya. Mathematics },
     pages = {263--284},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/}
}
TY  - JOUR
AU  - A. G. Khovanskii
TI  - Newton polytopes and irreducible components of complete intersections
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 263
EP  - 284
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/
LA  - en
ID  - IM2_2016_80_1_a8
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%T Newton polytopes and irreducible components of complete intersections
%J Izvestiya. Mathematics 
%D 2016
%P 263-284
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/
%G en
%F IM2_2016_80_1_a8
A. G. Khovanskii. Newton polytopes and irreducible components of complete intersections. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 263-284. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/

[1] A. G. Khovanskii, “Newton polyhedra and the genus of complete intersections”, Funct. Anal. Appl., 12:1 (1978), 38–46 | DOI | MR | Zbl

[2] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR | Zbl

[3] V. I. Danilov, A. G. Khovanskii, “Newton polyhedra and an algorithm for computing Hodge–Deligne numbers”, Math. USSR-Izv., 29:2 (1987), 279–298 | DOI | MR | Zbl

[4] A. Esterov, K. Takeuchi, “Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers”, Int. Math. Res. Not. IMRN, 2012:15 (2012), 3567–3613 ; (2010), arXiv: 1009.0230v4 | DOI | MR | Zbl

[5] A. Esterov, G. Gusev, “Systems of equations with a single solution”, J. Symbolic Comput., 68, part 2 (2015), 116–130 ; (2014), arXiv: 1211.6763v2 | DOI | MR | Zbl

[6] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb. (N. F.), 9, 2. erg. Aufl., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1962, vii+181 pp. | MR | Zbl | Zbl

[7] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings, Lecture Notes in Math., 1, Springer-Verlag, Berlin–New York, 1973, viii+209 pp. | DOI | MR | Zbl