Newton polytopes and irreducible components of complete intersections
Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 263-284

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the number of irreducible components of varieties in $(\mathbb C^*)^n$ determined by generic systems of equations with given Newton polytopes. Every such component can in its turn be given by a generic system of equations whose Newton polytopes are found explicitly. It is known that many discrete invariants of a variety can be found in terms of the Newton polytopes. Our results enable one to calculate such invariants for each irreducible component of the variety.
Keywords: Newton polytopes, mixed volume, irreducible components, holomorphic forms.
@article{IM2_2016_80_1_a8,
     author = {A. G. Khovanskii},
     title = {Newton polytopes and irreducible components of complete intersections},
     journal = {Izvestiya. Mathematics },
     pages = {263--284},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/}
}
TY  - JOUR
AU  - A. G. Khovanskii
TI  - Newton polytopes and irreducible components of complete intersections
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 263
EP  - 284
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/
LA  - en
ID  - IM2_2016_80_1_a8
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%T Newton polytopes and irreducible components of complete intersections
%J Izvestiya. Mathematics 
%D 2016
%P 263-284
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/
%G en
%F IM2_2016_80_1_a8
A. G. Khovanskii. Newton polytopes and irreducible components of complete intersections. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 263-284. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/