Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_1_a8, author = {A. G. Khovanskii}, title = {Newton polytopes and irreducible components of complete intersections}, journal = {Izvestiya. Mathematics }, pages = {263--284}, publisher = {mathdoc}, volume = {80}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/} }
A. G. Khovanskii. Newton polytopes and irreducible components of complete intersections. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 263-284. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a8/
[1] A. G. Khovanskii, “Newton polyhedra and the genus of complete intersections”, Funct. Anal. Appl., 12:1 (1978), 38–46 | DOI | MR | Zbl
[2] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR | Zbl
[3] V. I. Danilov, A. G. Khovanskii, “Newton polyhedra and an algorithm for computing Hodge–Deligne numbers”, Math. USSR-Izv., 29:2 (1987), 279–298 | DOI | MR | Zbl
[4] A. Esterov, K. Takeuchi, “Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers”, Int. Math. Res. Not. IMRN, 2012:15 (2012), 3567–3613 ; (2010), arXiv: 1009.0230v4 | DOI | MR | Zbl
[5] A. Esterov, G. Gusev, “Systems of equations with a single solution”, J. Symbolic Comput., 68, part 2 (2015), 116–130 ; (2014), arXiv: 1211.6763v2 | DOI | MR | Zbl
[6] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb. (N. F.), 9, 2. erg. Aufl., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1962, vii+181 pp. | MR | Zbl | Zbl
[7] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings, Lecture Notes in Math., 1, Springer-Verlag, Berlin–New York, 1973, viii+209 pp. | DOI | MR | Zbl