Maximally reducible monodromy of bivariate hypergeometric systems
Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 221-262

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the branching of solutions of holonomic bivariate Horn-type hypergeometric systems. Special attention is paid to invariant subspaces of Puiseux polynomial solutions. We mainly study Horn systems defined by simplicial configurations and Horn systems whose Ore–Sato polygons are either zonotopes or Minkowski sums of a triangle and segments proportional to its sides. We prove a necessary and sufficient condition for the monodromy representation to be maximally reducible, that is, for the space of holomorphic solutions to split into a direct sum of one-dimensional invariant subspaces.
Keywords: hypergeometric system of equations, monodromy representation, monodromy reducibility, intertwining operator.
@article{IM2_2016_80_1_a7,
     author = {T. M. Sadykov and S. Tanab\'e},
     title = {Maximally reducible monodromy of bivariate hypergeometric systems},
     journal = {Izvestiya. Mathematics },
     pages = {221--262},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a7/}
}
TY  - JOUR
AU  - T. M. Sadykov
AU  - S. Tanabé
TI  - Maximally reducible monodromy of bivariate hypergeometric systems
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 221
EP  - 262
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a7/
LA  - en
ID  - IM2_2016_80_1_a7
ER  - 
%0 Journal Article
%A T. M. Sadykov
%A S. Tanabé
%T Maximally reducible monodromy of bivariate hypergeometric systems
%J Izvestiya. Mathematics 
%D 2016
%P 221-262
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a7/
%G en
%F IM2_2016_80_1_a7
T. M. Sadykov; S. Tanabé. Maximally reducible monodromy of bivariate hypergeometric systems. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 221-262. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a7/