Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_1_a5, author = {C. Mitschi}, title = {Some applications of parameterized {Picard--Vessiot} theory}, journal = {Izvestiya. Mathematics }, pages = {167--188}, publisher = {mathdoc}, volume = {80}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a5/} }
C. Mitschi. Some applications of parameterized Picard--Vessiot theory. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 167-188. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a5/
[1] P. J. Cassidy, M. F. Singer, “Galois theory of parameterized differential equations and linear differential algebraic groups”, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 113–155 | DOI | MR | Zbl
[2] P. J. Cassidy, “Differential algebraic groups”, Amer. J. Math., 94:3 (1972), 891–954 | DOI | MR | Zbl
[3] E. R. Kolchin, Differential algebraic groups, Pure Appl. Math., 114, Academic Press, Inc., Orlando, FL, 1985, xvii+271 pp. | MR | Zbl
[4] A. Buium, Differential algebraic groups of finite dimension, Lecture Notes in Math., 1506, Springer-Verlag, Berlin, 1992, xvi+145 pp. | MR | Zbl
[5] C. Mitschi, M. F. Singer, “Monodromy groups of parameterized linear differential equations with regular singularities”, Bull. London Math. Soc., 44:5 (2012), 913–930 ; (2011), arXiv: 1106.2664v1 | DOI | MR | Zbl
[6] D. G. Babbitt, V. S. Varadarajan, Deformations of nilpotent matrices over rings and reduction of analytic families of meromorphic differential equations, Mem. Amer. Math. Soc., 55{, No 325}, Amer. Math. Soc., Providence, RI, 1985, iv+147 pp. | DOI | MR | Zbl
[7] R. Schäfke, “Formal fundamental solutions of irregular singular differential equations depending upon parameters”, J. Dynam. Control Systems, 7:4 (2001), 501–533 | DOI | MR | Zbl
[8] T. Dreyfus, “A density theorem in parameterized differential Galois theory”, Pacific J. Math., 271:1 (2014), 87–141 | DOI | MR | Zbl
[9] A. Borel, Essays in the history of Lie groups and algebraic groups, Hist. Math., 21, Amer. Math. Soc., Providence, RI; London Math. Soc., Cambridge, 2001, xiv+184 pp. | MR | Zbl
[10] H. Żoła̧dek, The monodromy group, Monografie matematyszne. Instytut Matematyczny Polskiej Akademii Nauk (New Series), 67, Birkhäuser Verlag, Basel, 2006, xii+580 pp. | MR | Zbl
[11] L. Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen, v. I, II, B. G. Teubner, Leipzig, 1895, 1897, xx+487 pp., xviii+532 pp. pp. | Zbl
[12] M. van der Put, M. F. Singer, Galois theory of linear differential equations, Grundlehren Math. Wiss., 328, Springer-Verlag, Berlin, 2003, xviii+438 pp. | DOI | MR | Zbl
[13] A. Seidenberg, “Abstract differential algebra and the analytic case”, Proc. Amer. Math. Soc., 9 (1958), 159–164 | DOI | MR | Zbl
[14] A. Seidenberg, “Abstract differential algebra and the analytic case. II”, Proc. Amer. Math. Soc., 23:3 (1969), 689–691 | DOI | MR | Zbl
[15] M. Kuga, Galois' dream: group theory and differential equations, Birkhäuser Boston, Inc., Boston, MA, 1993, x+150 pp. | DOI | MR | Zbl
[16] R. S. Palais, “Some analogues of Hartogs' theorem in an algebraic setting”, Amer. J. Math., 100:2 (1978), 387–405 | DOI | MR | Zbl
[17] A. A. Bolibruch, “On isomonodromic deformations of Fuchsian systems”, J. Dynam. Control Systems, 3:4 (1997), 589–604 | DOI | MR | Zbl
[18] H. Grauert, “Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen”, Math. Ann., 133 (1957), 450–472 ; H. Cartan, “Espaces fibrés analytiques”, Symposium Internacional de Topología Algebraica, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, 97–121 ; H. Grauert, “Analytische Faserungen über holomorph-vollständigen Räumen”, Math. Ann., 135 (1958), 263–273 | MR | Zbl | MR | Zbl | MR | Zbl
[19] Y. Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Transl. Math. Monogr., 82, Amer. Math. Soc., Providence, RI, 1990, xiv+267 pp. | MR | Zbl
[20] S. Chakravarty, M. J. Ablowitz, “Integrability, monodromy evolving deformations, and self-dual Bianchi IX systems”, Phys. Rev. Lett., 76:6 (1996), 857–860 | DOI | MR | Zbl
[21] Y. Ohyama, Quadratic equations and monodromy evolving deformations, 2007, arXiv: 0709.4587v1
[22] Y. Ohyama, “Monodromy evolving deformations and Halphen's equation”, Groups and symmetries, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 343–348 | MR | Zbl
[23] C. Mitschi, M. F. Singer, “Projective isomonodromy and Galois groups”, Proc. Amer. Math. Soc., 141:2 (2013), 605–617 | DOI | MR | Zbl
[24] G. Darboux, “Sur les surfaces orthogonales”, Ann. Sci. École Norm. Sup., 3 (1866), 97–141
[25] G. Darboux, “Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux”, Ann. Sci. École Norm. Sup. (2), 7 (1878), 101–150, 227–260, 275–348 | Zbl
[26] É. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Actualités Sci. Ind., 994, Hermann et Cie., Paris, 1945, 214 pp. | MR | Zbl
[27] G. H. Halphen, “Sur un système d'équations différentielles”, C. R. Acad. Sci. Paris, 92 (1881), 1101–1103 | Zbl
[28] G. H. Halphen, “Sur certains systèmes d'équations différentielles”, C. R. Acad. Sci. Paris, 92 (1881), 1404–1407 | Zbl
[29] D. V. Anosov, A. A. Bolibruch, The Riemann–Hilbert problem, Aspects of Math., 22, Friedr. Vieweg Sohn, Braunschweig, 1994, x+190 pp. | DOI | MR | Zbl
[30] A. A. Bolibrukh, “The Riemann–Hilbert problem”, Russian Math. Surveys, 45:2 (1990), 1–58 | DOI | MR | Zbl
[31] A. A. Bolibrukh, “On sufficient conditions for the positive solvability of the Riemann–Hilbert problem”, Math. Notes, 51:2 (1992), 110–117 | DOI | MR | Zbl
[32] A. A. Bolibrukh, “On analytic transformation to Birkhoff standard form”, Proc. Steklov Inst. Math., 203 (1995), 29–35 | MR | Zbl
[33] A. A. Bolibrukh, “The 21st Hilbert problem for linear Fuchsian systems”, Proc. Steklov Inst. Math., 206 (1995), 1–145 | MR | Zbl
[34] A. A. Bolibruch, S. Malek, C. Mitschi, “On the generalized Riemann–Hilbert problem with irregular singularities”, Expo. Math., 24:3 (2006), 235–272 | DOI | MR | Zbl
[35] B. Malgrange, “Sur les déformations isomonodromiques. I. {S}ingularités régulières”, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR | Zbl
[36] A. Bolibruch, “Inverse problems for linear differential equations with meromorphic coefficients”, Isomonodromic deformations and applications in physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, 31, Amer. Math. Soc., Providence, RI, 2002, 3–25 | MR | Zbl
[37] A. A. Bolibruch, A. R. Its, A. A. Kapaev, “On the Riemann–Hilbert–Birkhoff inverse monodromy problem and the Painlevé equations”, Algebra i analiz, 16:1 (2004), 121–162 ; St. Petersburg Math. J., 16:1 (2005), 105–142 | MR | Zbl | DOI
[38] C. Tretkoff, M. Tretkoff, “Solution of the inverse problem of differential {Galois} theory in the classical case”, Amer. J. Math., 101:6 (1979), 1327–1332 | DOI | MR | Zbl
[39] P. Landesman, “Generalized differential Galois theory”, Trans. Amer. Math. Soc., 360, no. 8, 2008, 4441–4495 | DOI | MR | Zbl
[40] M. F. Singer, “Linear algebraic groups as parameterized Picard–Vessiot Galois groups”, J. Algebra, 373 (2013), 153–161 ; old version, 2011 http://www4.ncsu.edu/~singer/ms_papers.html | DOI | MR
[41] A. Minchenko, A. Ovchinnikov, M. F. Singer, “Unipotent differential algebraic groups as parameterized differential Galois groups”, J. Inst. Math. Jussieu, 13:4 (2014), 671–700 | DOI | MR | Zbl
[42] A. Minchenko, A. Ovchinnikov, M. F. Singer, “Reductive linear differential algebraic groups and the Galois groups of parameterized linear differential equations”, Int. Math. Res. Not. IMRN, 2015:7 (2015), 1733–1793 | DOI | Zbl
[43] A. Marcja, C. Toffaloni, A guide to classical and modern model theory, Trends Log. Stud. Log. Libr., 19, Kluwer Acad. Publ., Dordrecht, xi+369 pp. | Zbl
[44] D. Marker, Model theory of differential fields, Preprint, University of Illinois at Chicago, 2000
[45] D. Marker, “Model theory of differential fields”, Model theory, algebra and geometry, Math. Sci. Res. Inst. Publ., 39, Cambridge Univ. Press, 2000, 53–63 | MR | Zbl
[46] A. Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland Publishing Co., Amsterdam, 1963, ix+284 pp. | MR | Zbl
[47] C. Wood, “The model theory of differential fields revisited”, Israel J. Math., 25:3-4 (1976), 331-352 | DOI | MR | Zbl
[48] L. Blum, Generalized algebraic structures: a model theoretic approach, Ph. D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, 1968
[49] A. Robinson, “On the concept of a differentially closed field”, Bull. Res. Council Israel Sect. F, 8 (1959), 113–128 | MR | Zbl
[50] E. R. Kolchin, “Constrained extensions of differential fields”, Advances in Math., 12:2 (1974), 141–170 | DOI | MR | Zbl
[51] E. R. Kolchin, Differential algebra and algebraic groups, Pure Appl. Math., 54, Academic Press, New York–London, 1973, xviii+446 pp. | MR | Zbl
[52] M. D. Morley, “Categoricity in power”, Trans. Amer. Math. Soc., 114, no. 2, 1965, 514–538 | DOI | MR | Zbl
[53] S. Shelah, “Differentially closed fields”, Israel J. Math., 16:3 (1973), 314–328 | DOI | MR | Zbl
[54] G. E. Sacks, “The differential closure of a differential field”, Bull. Amer. Math. Soc., 78:5 (1972), 629–634 | DOI | MR | Zbl
[55] C. Mitschi, D. Sauzin, Divergent Series, Summability and Resurgence, vol. I: Monodromy and Resurgence, Springer Lecture Notes, 2153, 2016 (to appear)