Some applications of parameterized Picard--Vessiot theory
Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 167-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is an expository article describing some applications of parameterized Picard–Vessiot theory. This Galois theory for parameterized linear differential equations was Cassidy and Singer's contribution to an earlier volume dedicated to the memory of Andrey Bolibrukh. The main results we present here were obtained for families of ordinary differential equations with parameterized regular singularities in joint work with Singer. They include parametric versions of Schlesinger's theorem and of the weak Riemann–Hilbert problem as well as an algebraic characterization of a special type of monodromy evolving deformations illustrated by the classical Darboux–Halphen equation. Some of these results have recently been applied by different authors to solve the inverse problem of parameterized Picard–Vessiot theory, and were also generalized to irregular singularities. We sketch some of these results by other authors. The paper includes a brief history of the Darboux–Halphen equation as well as an appendix on differentially closed fields.
Keywords: complex linear ordinary differential equations, differential Galois theory, parameterized Picard–Vessiot theory, monodromy evolving deformations, inverse problems.
Mots-clés : monodromy, isomonodromy, Darboux–Halphen equation
@article{IM2_2016_80_1_a5,
     author = {C. Mitschi},
     title = {Some applications of parameterized {Picard--Vessiot} theory},
     journal = {Izvestiya. Mathematics },
     pages = {167--188},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a5/}
}
TY  - JOUR
AU  - C. Mitschi
TI  - Some applications of parameterized Picard--Vessiot theory
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 167
EP  - 188
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a5/
LA  - en
ID  - IM2_2016_80_1_a5
ER  - 
%0 Journal Article
%A C. Mitschi
%T Some applications of parameterized Picard--Vessiot theory
%J Izvestiya. Mathematics 
%D 2016
%P 167-188
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a5/
%G en
%F IM2_2016_80_1_a5
C. Mitschi. Some applications of parameterized Picard--Vessiot theory. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 167-188. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a5/

[1] P. J. Cassidy, M. F. Singer, “Galois theory of parameterized differential equations and linear differential algebraic groups”, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 113–155 | DOI | MR | Zbl

[2] P. J. Cassidy, “Differential algebraic groups”, Amer. J. Math., 94:3 (1972), 891–954 | DOI | MR | Zbl

[3] E. R. Kolchin, Differential algebraic groups, Pure Appl. Math., 114, Academic Press, Inc., Orlando, FL, 1985, xvii+271 pp. | MR | Zbl

[4] A. Buium, Differential algebraic groups of finite dimension, Lecture Notes in Math., 1506, Springer-Verlag, Berlin, 1992, xvi+145 pp. | MR | Zbl

[5] C. Mitschi, M. F. Singer, “Monodromy groups of parameterized linear differential equations with regular singularities”, Bull. London Math. Soc., 44:5 (2012), 913–930 ; (2011), arXiv: 1106.2664v1 | DOI | MR | Zbl

[6] D. G. Babbitt, V. S. Varadarajan, Deformations of nilpotent matrices over rings and reduction of analytic families of meromorphic differential equations, Mem. Amer. Math. Soc., 55{, No 325}, Amer. Math. Soc., Providence, RI, 1985, iv+147 pp. | DOI | MR | Zbl

[7] R. Schäfke, “Formal fundamental solutions of irregular singular differential equations depending upon parameters”, J. Dynam. Control Systems, 7:4 (2001), 501–533 | DOI | MR | Zbl

[8] T. Dreyfus, “A density theorem in parameterized differential Galois theory”, Pacific J. Math., 271:1 (2014), 87–141 | DOI | MR | Zbl

[9] A. Borel, Essays in the history of Lie groups and algebraic groups, Hist. Math., 21, Amer. Math. Soc., Providence, RI; London Math. Soc., Cambridge, 2001, xiv+184 pp. | MR | Zbl

[10] H. Żoła̧dek, The monodromy group, Monografie matematyszne. Instytut Matematyczny Polskiej Akademii Nauk (New Series), 67, Birkhäuser Verlag, Basel, 2006, xii+580 pp. | MR | Zbl

[11] L. Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen, v. I, II, B. G. Teubner, Leipzig, 1895, 1897, xx+487 pp., xviii+532 pp. pp. | Zbl

[12] M. van der Put, M. F. Singer, Galois theory of linear differential equations, Grundlehren Math. Wiss., 328, Springer-Verlag, Berlin, 2003, xviii+438 pp. | DOI | MR | Zbl

[13] A. Seidenberg, “Abstract differential algebra and the analytic case”, Proc. Amer. Math. Soc., 9 (1958), 159–164 | DOI | MR | Zbl

[14] A. Seidenberg, “Abstract differential algebra and the analytic case. II”, Proc. Amer. Math. Soc., 23:3 (1969), 689–691 | DOI | MR | Zbl

[15] M. Kuga, Galois' dream: group theory and differential equations, Birkhäuser Boston, Inc., Boston, MA, 1993, x+150 pp. | DOI | MR | Zbl

[16] R. S. Palais, “Some analogues of Hartogs' theorem in an algebraic setting”, Amer. J. Math., 100:2 (1978), 387–405 | DOI | MR | Zbl

[17] A. A. Bolibruch, “On isomonodromic deformations of Fuchsian systems”, J. Dynam. Control Systems, 3:4 (1997), 589–604 | DOI | MR | Zbl

[18] H. Grauert, “Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen”, Math. Ann., 133 (1957), 450–472 ; H. Cartan, “Espaces fibrés analytiques”, Symposium Internacional de Topología Algebraica, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, 97–121 ; H. Grauert, “Analytische Faserungen über holomorph-vollständigen Räumen”, Math. Ann., 135 (1958), 263–273 | MR | Zbl | MR | Zbl | MR | Zbl

[19] Y. Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Transl. Math. Monogr., 82, Amer. Math. Soc., Providence, RI, 1990, xiv+267 pp. | MR | Zbl

[20] S. Chakravarty, M. J. Ablowitz, “Integrability, monodromy evolving deformations, and self-dual Bianchi IX systems”, Phys. Rev. Lett., 76:6 (1996), 857–860 | DOI | MR | Zbl

[21] Y. Ohyama, Quadratic equations and monodromy evolving deformations, 2007, arXiv: 0709.4587v1

[22] Y. Ohyama, “Monodromy evolving deformations and Halphen's equation”, Groups and symmetries, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 343–348 | MR | Zbl

[23] C. Mitschi, M. F. Singer, “Projective isomonodromy and Galois groups”, Proc. Amer. Math. Soc., 141:2 (2013), 605–617 | DOI | MR | Zbl

[24] G. Darboux, “Sur les surfaces orthogonales”, Ann. Sci. École Norm. Sup., 3 (1866), 97–141

[25] G. Darboux, “Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux”, Ann. Sci. École Norm. Sup. (2), 7 (1878), 101–150, 227–260, 275–348 | Zbl

[26] É. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Actualités Sci. Ind., 994, Hermann et Cie., Paris, 1945, 214 pp. | MR | Zbl

[27] G. H. Halphen, “Sur un système d'équations différentielles”, C. R. Acad. Sci. Paris, 92 (1881), 1101–1103 | Zbl

[28] G. H. Halphen, “Sur certains systèmes d'équations différentielles”, C. R. Acad. Sci. Paris, 92 (1881), 1404–1407 | Zbl

[29] D. V. Anosov, A. A. Bolibruch, The Riemann–Hilbert problem, Aspects of Math., 22, Friedr. Vieweg Sohn, Braunschweig, 1994, x+190 pp. | DOI | MR | Zbl

[30] A. A. Bolibrukh, “The Riemann–Hilbert problem”, Russian Math. Surveys, 45:2 (1990), 1–58 | DOI | MR | Zbl

[31] A. A. Bolibrukh, “On sufficient conditions for the positive solvability of the Riemann–Hilbert problem”, Math. Notes, 51:2 (1992), 110–117 | DOI | MR | Zbl

[32] A. A. Bolibrukh, “On analytic transformation to Birkhoff standard form”, Proc. Steklov Inst. Math., 203 (1995), 29–35 | MR | Zbl

[33] A. A. Bolibrukh, “The 21st Hilbert problem for linear Fuchsian systems”, Proc. Steklov Inst. Math., 206 (1995), 1–145 | MR | Zbl

[34] A. A. Bolibruch, S. Malek, C. Mitschi, “On the generalized Riemann–Hilbert problem with irregular singularities”, Expo. Math., 24:3 (2006), 235–272 | DOI | MR | Zbl

[35] B. Malgrange, “Sur les déformations isomonodromiques. I. {S}ingularités régulières”, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR | Zbl

[36] A. Bolibruch, “Inverse problems for linear differential equations with meromorphic coefficients”, Isomonodromic deformations and applications in physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, 31, Amer. Math. Soc., Providence, RI, 2002, 3–25 | MR | Zbl

[37] A. A. Bolibruch, A. R. Its, A. A. Kapaev, “On the Riemann–Hilbert–Birkhoff inverse monodromy problem and the Painlevé equations”, Algebra i analiz, 16:1 (2004), 121–162 ; St. Petersburg Math. J., 16:1 (2005), 105–142 | MR | Zbl | DOI

[38] C. Tretkoff, M. Tretkoff, “Solution of the inverse problem of differential {Galois} theory in the classical case”, Amer. J. Math., 101:6 (1979), 1327–1332 | DOI | MR | Zbl

[39] P. Landesman, “Generalized differential Galois theory”, Trans. Amer. Math. Soc., 360, no. 8, 2008, 4441–4495 | DOI | MR | Zbl

[40] M. F. Singer, “Linear algebraic groups as parameterized Picard–Vessiot Galois groups”, J. Algebra, 373 (2013), 153–161 ; old version, 2011 http://www4.ncsu.edu/~singer/ms_papers.html | DOI | MR

[41] A. Minchenko, A. Ovchinnikov, M. F. Singer, “Unipotent differential algebraic groups as parameterized differential Galois groups”, J. Inst. Math. Jussieu, 13:4 (2014), 671–700 | DOI | MR | Zbl

[42] A. Minchenko, A. Ovchinnikov, M. F. Singer, “Reductive linear differential algebraic groups and the Galois groups of parameterized linear differential equations”, Int. Math. Res. Not. IMRN, 2015:7 (2015), 1733–1793 | DOI | Zbl

[43] A. Marcja, C. Toffaloni, A guide to classical and modern model theory, Trends Log. Stud. Log. Libr., 19, Kluwer Acad. Publ., Dordrecht, xi+369 pp. | Zbl

[44] D. Marker, Model theory of differential fields, Preprint, University of Illinois at Chicago, 2000

[45] D. Marker, “Model theory of differential fields”, Model theory, algebra and geometry, Math. Sci. Res. Inst. Publ., 39, Cambridge Univ. Press, 2000, 53–63 | MR | Zbl

[46] A. Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland Publishing Co., Amsterdam, 1963, ix+284 pp. | MR | Zbl

[47] C. Wood, “The model theory of differential fields revisited”, Israel J. Math., 25:3-4 (1976), 331-352 | DOI | MR | Zbl

[48] L. Blum, Generalized algebraic structures: a model theoretic approach, Ph. D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, 1968

[49] A. Robinson, “On the concept of a differentially closed field”, Bull. Res. Council Israel Sect. F, 8 (1959), 113–128 | MR | Zbl

[50] E. R. Kolchin, “Constrained extensions of differential fields”, Advances in Math., 12:2 (1974), 141–170 | DOI | MR | Zbl

[51] E. R. Kolchin, Differential algebra and algebraic groups, Pure Appl. Math., 54, Academic Press, New York–London, 1973, xviii+446 pp. | MR | Zbl

[52] M. D. Morley, “Categoricity in power”, Trans. Amer. Math. Soc., 114, no. 2, 1965, 514–538 | DOI | MR | Zbl

[53] S. Shelah, “Differentially closed fields”, Israel J. Math., 16:3 (1973), 314–328 | DOI | MR | Zbl

[54] G. E. Sacks, “The differential closure of a differential field”, Bull. Amer. Math. Soc., 78:5 (1972), 629–634 | DOI | MR | Zbl

[55] C. Mitschi, D. Sauzin, Divergent Series, Summability and Resurgence, vol. I: Monodromy and Resurgence, Springer Lecture Notes, 2153, 2016 (to appear)