Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_1_a4, author = {F. Loray}, title = {Isomonodromic deformation of {Lam\'e} connections, {Painlev\'e~VI} equation and {Okamoto} symmetry}, journal = {Izvestiya. Mathematics }, pages = {113--166}, publisher = {mathdoc}, volume = {80}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/} }
F. Loray. Isomonodromic deformation of Lam\'e connections, Painlev\'e~VI equation and Okamoto symmetry. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 113-166. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/
[1] H. Poincaré, “Sur les groupes des équations linéaires”, Acta Math., 4 (1884), 201–312 | DOI | MR | Zbl
[2] W. M. Goldman, “The modular group action on real $SL(2)$-characters of a one-holed torus”, Geom. Topol., 7 (2003), 443–486 | DOI | MR | Zbl
[3] D. Gallo, M. Kapovich, A. Marden, “The monodromy groups of Schwarzian equations on closed Riemann surfaces”, Ann. of Math. (2), 151:2 (2000), 625–704 | DOI | MR | Zbl
[4] R. C. Gunning, “Special coordinate coverings of Riemann surfaces”, Math. Ann., 170 (1967), 67–86 | DOI | MR | Zbl
[5] A. Beilinson, V. Drinfeld, Opers, arXiv: math/0501398
[6] F. Loray, “Okamoto symmetry of Painlevé VI equation and isomonodromic deformation of Lamé connections”, Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, 129–136 | MR | Zbl
[7] B. Malgrange, “Sur les déformations isomonodromiques. I. Singularités régulières”, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR | Zbl
[8] J. Palmer, “Zeros of the Jimbo, Miwa, Ueno tau function”, J. Math. Phys., 40:12 (1999), 6638–6681 | DOI | MR | Zbl
[9] A. A. Bolibrukh, “The Riemann–Hilbert problem”, Russian Math. Surveys, 45:2 (1990), 1–58 | DOI | MR | Zbl
[10] N. J. Hitchin, “Twistor spaces, Einstein metrics and isomonodromic deformations”, J. Differential Geom., 42:1 (1995), 30–112 | MR | Zbl
[11] F. Loray, M. van der Put, F. Ulmer, “The Lamé family of connections on the projective line”, Ann. Fac. Sci. Toulouse Math. (6), 17:2 (2008), 371–409 | DOI | MR | Zbl
[12] M. F. Atiyah, “Vector bundles over an elliptic curve”, Proc. London Math. Soc. (3), 7 (1957), 414–452 | DOI | MR | Zbl
[13] L. W. Tu, “Semistable bundles over an elliptic curve”, Adv. Math., 98 (1993), 1–26 | DOI | MR | Zbl
[14] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math., 163, Springer-Verlag, Berlin–New York, 1970, iii+133 pp. | MR | Zbl
[15] V. Heu, “Stability of rank 2 vector bundles along isomonodromic deformations”, Math. Ann., 344:2 (2009), 463–490 | DOI | MR | Zbl
[16] S. Kawai, “Isomonodromic deformation of Fuchsian projective connections on elliptic curves”, Nagoya Math. J., 171 (2003), 127–161 | MR | Zbl
[17] A. M. Levin, M. A. Olshanetsky, “Painlevé–Calogero correspondence”, Calogero–Moser–Sutherland models (Montréal, QC, 1997), CRM Ser. Math. Phys., Springer, New York, 2000, 313–332 | MR
[18] Yu. I. Manin, “Sixth Painlevé equation, universal elliptic curve, and mirror of $\mathbb P^2$”, Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, 186, Amer. Math. Soc., Providence, RI, 1998, 131–151 | MR | Zbl
[19] M. Noumi, Y. Yamada, “A new Lax pair for the sixth Painlevé equation associated with $\widehat{\mathfrak{so}}(8)$”, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, 238–252 | DOI | MR | Zbl
[20] D. Arinkin, S. Lysenko, “Isomorphisms between moduli spaces of $SL(2)$-bundles with connections on $\mathbb P^1\setminus\{x_1,\dots,x_4\}$”, Math. Res. Lett., 4:2 (1997), 181–190 | DOI | MR | Zbl
[21] F. Loray, M.-H. Saito, C. Simpson, “Foliations on the moduli space of rank two connections on the projective line minus four points”, Geometric and differential Galois theories, Sémin. Congr., 27, Soc. Math. France, Paris, 2013, 117–170 | MR
[22] A. Zotov, “Elliptic linear problem for the Calogero–Inozemtsev model and Painlevé VI equation”, Lett. Math. Phys., 67:2 (2004), 153–165 | DOI | MR | Zbl
[23] É. Picard, “Mémoire sur la théorie des fonctions algébriques de deux variables”, J. Math. Pures et Appl. (4), 5 (1889), 135–319 | Zbl
[24] M. Mazzocco, “Picard and Chazy solutions to the Painlevé VI equation”, Math. Ann., 321:1 (2001), 157–195 | DOI | MR | Zbl
[25] M. Inaba, K. Iwasaki, M.-H. Saito, “Dynamics of the sixth Painlevé equation”, Théories asymptotiques et équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 103–167 | MR | Zbl
[26] P. Boalch, “From Klein to Painlevé via Fourier, Laplace and Jimbo”, Proc. London Math. Soc. (3), 90:1 (2005), 167–208 | DOI | MR | Zbl
[27] K. Okamoto, “Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé”, Japan. J. Math. (N. S.), 5:1 (1979), 1–79 | MR | Zbl
[28] M. Brunella, Birational geometry of foliations, Monografías de Matemática, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2000, 138 pp. | MR | Zbl
[29] D. Cerveau, A. Lins-Neto, F. Loray, J. V. Pereira, F. Touzet, “Complex codimension one singular foliations and Godbillon–Vey sequences”, Mosc. Math. J., 7:1 (2007), 21–54 | MR | Zbl
[30] F. Loray, J. V. Pereira, “Transversely projective foliations on surfaces: existence of minimal form and prescription of monodromy”, Internat. J. Math., 18:6 (2007), 723–747 | DOI | MR | Zbl
[31] M.-H. Saito, T. Takebe, H. Terajima,, “Deformation of Okamoto–Painlevé pairs and Painlevé equations”, J. Algebraic Geom., 11:2 (2002), 311–362 | DOI | MR | Zbl
[32] K. Okamoto, “Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{\mathrm{VI}}$”, Ann. Mat. Pura Appl. (4), 146 (1987), 337–381 | DOI | MR | Zbl
[33] R. C. Churchill, “Two generator subgroups of $SL(2,\mathbf C)$ and the hypergeometric, Riemann, and Lamé equations. Differential algebra and differential equations”, J. Symbolic Comput., 28:4-5 (1999), 521–545 | DOI | MR | Zbl
[34] S. Cantat, F. Loray, “Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation”, Ann. Inst. Fourier (Grenoble), 59:7 (2009), 2927–2978 | DOI | MR | Zbl
[35] D. Novikov, S. Yakovenko, “Lectures on meromorphic flat connections”, Normal forms, bifurcations and finiteness problems in differential equations, NATO Sci. Ser. II Math. Phys. Chem., 137, Kluwer Acad. Publ., Dordrecht, 2004, 387–430 | MR