Isomonodromic deformation of Lam\'e connections, Painlev\'e~VI equation and Okamoto symmetry
Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 113-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Lamé connection is a logarithmic $\mathrm{sl}(2,\mathbb C)$-connection $(E,\nabla)$ over an elliptic curve $X\colon \{y^2=x(x-1)(x-t)\}$, $t\neq 0,1$, having a single pole at infinity. When this connection is irreducible, we show that it is invariant under the standard involution and can be pushed down to a logarithmic $\mathrm{sl}(2,\mathbb C)$-connection on $\mathbb P^1$ with poles at $0$, $1$, $t$ and $\infty$. Therefore the isomonodromic deformation $(E_t,\nabla_t)$ of an irreducible Lamé connection, when the elliptic curve $X_t$ varies in the Legendre family, is parametrized by a solution $q(t)$ of the Painlevé VI differential equation $\mathrm{P}_{\mathrm{VI}}$. The variation of the underlying vector bundle $E_t$ along the deformation is computed in terms of the Tu moduli map: it is given by another solution $\tilde q(t)$ of $\mathrm{P}_{\mathrm{VI}}$, which is related to $q(t)$ by the Okamoto symmetry $s_2 s_1 s_2$ (Noumi–Yamada notation). Motivated by the Riemann–Hilbert problem for the classical Lamé equation, we raise the question whether the Painlevé transcendents do have poles. Some of these results were announced in [6].
Keywords: complex ordinary differential equations, isomonodromic deformations, Lamé differential equation, Painlevé equation.
@article{IM2_2016_80_1_a4,
     author = {F. Loray},
     title = {Isomonodromic deformation of {Lam\'e} connections, {Painlev\'e~VI} equation and {Okamoto} symmetry},
     journal = {Izvestiya. Mathematics },
     pages = {113--166},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/}
}
TY  - JOUR
AU  - F. Loray
TI  - Isomonodromic deformation of Lam\'e connections, Painlev\'e~VI equation and Okamoto symmetry
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 113
EP  - 166
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/
LA  - en
ID  - IM2_2016_80_1_a4
ER  - 
%0 Journal Article
%A F. Loray
%T Isomonodromic deformation of Lam\'e connections, Painlev\'e~VI equation and Okamoto symmetry
%J Izvestiya. Mathematics 
%D 2016
%P 113-166
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/
%G en
%F IM2_2016_80_1_a4
F. Loray. Isomonodromic deformation of Lam\'e connections, Painlev\'e~VI equation and Okamoto symmetry. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 113-166. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/

[1] H. Poincaré, “Sur les groupes des équations linéaires”, Acta Math., 4 (1884), 201–312 | DOI | MR | Zbl

[2] W. M. Goldman, “The modular group action on real $SL(2)$-characters of a one-holed torus”, Geom. Topol., 7 (2003), 443–486 | DOI | MR | Zbl

[3] D. Gallo, M. Kapovich, A. Marden, “The monodromy groups of Schwarzian equations on closed Riemann surfaces”, Ann. of Math. (2), 151:2 (2000), 625–704 | DOI | MR | Zbl

[4] R. C. Gunning, “Special coordinate coverings of Riemann surfaces”, Math. Ann., 170 (1967), 67–86 | DOI | MR | Zbl

[5] A. Beilinson, V. Drinfeld, Opers, arXiv: math/0501398

[6] F. Loray, “Okamoto symmetry of Painlevé VI equation and isomonodromic deformation of Lamé connections”, Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, 129–136 | MR | Zbl

[7] B. Malgrange, “Sur les déformations isomonodromiques. I. Singularités régulières”, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR | Zbl

[8] J. Palmer, “Zeros of the Jimbo, Miwa, Ueno tau function”, J. Math. Phys., 40:12 (1999), 6638–6681 | DOI | MR | Zbl

[9] A. A. Bolibrukh, “The Riemann–Hilbert problem”, Russian Math. Surveys, 45:2 (1990), 1–58 | DOI | MR | Zbl

[10] N. J. Hitchin, “Twistor spaces, Einstein metrics and isomonodromic deformations”, J. Differential Geom., 42:1 (1995), 30–112 | MR | Zbl

[11] F. Loray, M. van der Put, F. Ulmer, “The Lamé family of connections on the projective line”, Ann. Fac. Sci. Toulouse Math. (6), 17:2 (2008), 371–409 | DOI | MR | Zbl

[12] M. F. Atiyah, “Vector bundles over an elliptic curve”, Proc. London Math. Soc. (3), 7 (1957), 414–452 | DOI | MR | Zbl

[13] L. W. Tu, “Semistable bundles over an elliptic curve”, Adv. Math., 98 (1993), 1–26 | DOI | MR | Zbl

[14] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math., 163, Springer-Verlag, Berlin–New York, 1970, iii+133 pp. | MR | Zbl

[15] V. Heu, “Stability of rank 2 vector bundles along isomonodromic deformations”, Math. Ann., 344:2 (2009), 463–490 | DOI | MR | Zbl

[16] S. Kawai, “Isomonodromic deformation of Fuchsian projective connections on elliptic curves”, Nagoya Math. J., 171 (2003), 127–161 | MR | Zbl

[17] A. M. Levin, M. A. Olshanetsky, “Painlevé–Calogero correspondence”, Calogero–Moser–Sutherland models (Montréal, QC, 1997), CRM Ser. Math. Phys., Springer, New York, 2000, 313–332 | MR

[18] Yu. I. Manin, “Sixth Painlevé equation, universal elliptic curve, and mirror of $\mathbb P^2$”, Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, 186, Amer. Math. Soc., Providence, RI, 1998, 131–151 | MR | Zbl

[19] M. Noumi, Y. Yamada, “A new Lax pair for the sixth Painlevé equation associated with $\widehat{\mathfrak{so}}(8)$”, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, 238–252 | DOI | MR | Zbl

[20] D. Arinkin, S. Lysenko, “Isomorphisms between moduli spaces of $SL(2)$-bundles with connections on $\mathbb P^1\setminus\{x_1,\dots,x_4\}$”, Math. Res. Lett., 4:2 (1997), 181–190 | DOI | MR | Zbl

[21] F. Loray, M.-H. Saito, C. Simpson, “Foliations on the moduli space of rank two connections on the projective line minus four points”, Geometric and differential Galois theories, Sémin. Congr., 27, Soc. Math. France, Paris, 2013, 117–170 | MR

[22] A. Zotov, “Elliptic linear problem for the Calogero–Inozemtsev model and Painlevé VI equation”, Lett. Math. Phys., 67:2 (2004), 153–165 | DOI | MR | Zbl

[23] É. Picard, “Mémoire sur la théorie des fonctions algébriques de deux variables”, J. Math. Pures et Appl. (4), 5 (1889), 135–319 | Zbl

[24] M. Mazzocco, “Picard and Chazy solutions to the Painlevé VI equation”, Math. Ann., 321:1 (2001), 157–195 | DOI | MR | Zbl

[25] M. Inaba, K. Iwasaki, M.-H. Saito, “Dynamics of the sixth Painlevé equation”, Théories asymptotiques et équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 103–167 | MR | Zbl

[26] P. Boalch, “From Klein to Painlevé via Fourier, Laplace and Jimbo”, Proc. London Math. Soc. (3), 90:1 (2005), 167–208 | DOI | MR | Zbl

[27] K. Okamoto, “Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé”, Japan. J. Math. (N. S.), 5:1 (1979), 1–79 | MR | Zbl

[28] M. Brunella, Birational geometry of foliations, Monografías de Matemática, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2000, 138 pp. | MR | Zbl

[29] D. Cerveau, A. Lins-Neto, F. Loray, J. V. Pereira, F. Touzet, “Complex codimension one singular foliations and Godbillon–Vey sequences”, Mosc. Math. J., 7:1 (2007), 21–54 | MR | Zbl

[30] F. Loray, J. V. Pereira, “Transversely projective foliations on surfaces: existence of minimal form and prescription of monodromy”, Internat. J. Math., 18:6 (2007), 723–747 | DOI | MR | Zbl

[31] M.-H. Saito, T. Takebe, H. Terajima,, “Deformation of Okamoto–Painlevé pairs and Painlevé equations”, J. Algebraic Geom., 11:2 (2002), 311–362 | DOI | MR | Zbl

[32] K. Okamoto, “Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{\mathrm{VI}}$”, Ann. Mat. Pura Appl. (4), 146 (1987), 337–381 | DOI | MR | Zbl

[33] R. C. Churchill, “Two generator subgroups of $SL(2,\mathbf C)$ and the hypergeometric, Riemann, and Lamé equations. Differential algebra and differential equations”, J. Symbolic Comput., 28:4-5 (1999), 521–545 | DOI | MR | Zbl

[34] S. Cantat, F. Loray, “Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation”, Ann. Inst. Fourier (Grenoble), 59:7 (2009), 2927–2978 | DOI | MR | Zbl

[35] D. Novikov, S. Yakovenko, “Lectures on meromorphic flat connections”, Normal forms, bifurcations and finiteness problems in differential equations, NATO Sci. Ser. II Math. Phys. Chem., 137, Kluwer Acad. Publ., Dordrecht, 2004, 387–430 | MR