Isomonodromic deformation of Lam\'e connections, Painlev\'e~VI equation and Okamoto symmetry
Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 113-166

Voir la notice de l'article provenant de la source Math-Net.Ru

A Lamé connection is a logarithmic $\mathrm{sl}(2,\mathbb C)$-connection $(E,\nabla)$ over an elliptic curve $X\colon \{y^2=x(x-1)(x-t)\}$, $t\neq 0,1$, having a single pole at infinity. When this connection is irreducible, we show that it is invariant under the standard involution and can be pushed down to a logarithmic $\mathrm{sl}(2,\mathbb C)$-connection on $\mathbb P^1$ with poles at $0$, $1$, $t$ and $\infty$. Therefore the isomonodromic deformation $(E_t,\nabla_t)$ of an irreducible Lamé connection, when the elliptic curve $X_t$ varies in the Legendre family, is parametrized by a solution $q(t)$ of the Painlevé VI differential equation $\mathrm{P}_{\mathrm{VI}}$. The variation of the underlying vector bundle $E_t$ along the deformation is computed in terms of the Tu moduli map: it is given by another solution $\tilde q(t)$ of $\mathrm{P}_{\mathrm{VI}}$, which is related to $q(t)$ by the Okamoto symmetry $s_2 s_1 s_2$ (Noumi–Yamada notation). Motivated by the Riemann–Hilbert problem for the classical Lamé equation, we raise the question whether the Painlevé transcendents do have poles. Some of these results were announced in [6].
Keywords: complex ordinary differential equations, isomonodromic deformations, Lamé differential equation, Painlevé equation.
@article{IM2_2016_80_1_a4,
     author = {F. Loray},
     title = {Isomonodromic deformation of {Lam\'e} connections, {Painlev\'e~VI} equation and {Okamoto} symmetry},
     journal = {Izvestiya. Mathematics },
     pages = {113--166},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/}
}
TY  - JOUR
AU  - F. Loray
TI  - Isomonodromic deformation of Lam\'e connections, Painlev\'e~VI equation and Okamoto symmetry
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 113
EP  - 166
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/
LA  - en
ID  - IM2_2016_80_1_a4
ER  - 
%0 Journal Article
%A F. Loray
%T Isomonodromic deformation of Lam\'e connections, Painlev\'e~VI equation and Okamoto symmetry
%J Izvestiya. Mathematics 
%D 2016
%P 113-166
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/
%G en
%F IM2_2016_80_1_a4
F. Loray. Isomonodromic deformation of Lam\'e connections, Painlev\'e~VI equation and Okamoto symmetry. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 113-166. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a4/