Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_1_a2, author = {V. V. Golyshev and D. Zagier}, title = {Proof of the gamma conjecture for {Fano} 3-folds of {Picard} rank~1}, journal = {Izvestiya. Mathematics }, pages = {24--49}, publisher = {mathdoc}, volume = {80}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a2/} }
V. V. Golyshev; D. Zagier. Proof of the gamma conjecture for Fano 3-folds of Picard rank~1. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 24-49. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a2/
[1] V. Golyshev, “Classification problems and mirror duality”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 88–121 | DOI | MR | Zbl
[2] V. V. Przyjalkowski, “Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties”, Sb. Math., 198:9 (2007), 1325–1340 | DOI | DOI | MR | Zbl
[3] F. Beukers, “Irrationality proofs using modular forms”, Journées arithmétiques de Besançon (Besançon, 1985), Astérisque, 147/148, Soc. Math. France, Paris, 1987, 271–283 | MR | Zbl
[4] L. Katzarkov, M. Kontsevich, T. Pantev, “Hodge theoretic aspects of mirror symmetry”, From Hodge theory to integrability and TQFT $tt^*$-geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 87–174 | DOI | MR | Zbl
[5] S. Galkin, V. Golyshev, H. Iritani, Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures, 2014, arXiv: 1404.6407
[6] S. Mori, S. Mukai, “Classification of Fano 3-folds with $b_2\ge2$”, Manuscripta Math., 36:2 (1981), 147–162 | DOI | MR | Zbl
[7] V. A. Iskovskih, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 | DOI | MR | Zbl
[8] “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | MR | Zbl
[9] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry. V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | Zbl
[10] V. Golyshev, J. Stienstra, “Fuchsian equations of type DN”, Commun. Number Theory Phys., 1:2 (2007), 323–346 | DOI | MR | Zbl
[11] F. Beukers, “On Dwork's accessory parameter problem”, Math. Z., 241:2 (2002), 425–444 | DOI | MR | Zbl
[12] D. Zagier, “Integral solutions of Apéry-like recurrence equations”, Groups and symmetries, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 349–366 | MR | Zbl
[13] A. B. Givental, “Equivariant Gromov–Witten invariants”, Internat. Math. Res. Notices, 1996:13 (1996), 613–663 | DOI | MR | Zbl
[14] V. V. Przhijalkovskii, “Gromov–Witten invariants of Fano threefolds of genera 6 and 8”, Sb. Math., 198:3 (2007), 433–446 | DOI | DOI | MR | Zbl
[15] W. Fulton, C. Woodward, “On the quantum product of Schubert classes”, J. Algebraic Geom., 13:4 (2004), 641–661 | DOI | MR | Zbl
[16] A. Beauville, “Quantum cohomology of complete intersections”, Mat. Fiz. Anal. Geom., 2:3-4 (1995), 384–398 | MR | Zbl
[17] V. Golyshev, M. Vlasenko, Equations D3 and spectral elliptic curves, 2012, arXiv: 1212.0205
[18] V. V. Przyjalkowski, “Minimal Gromov–Witten rings”, Izv. Math., 72:6 (2008), 1253–1272 | DOI | DOI | MR | Zbl
[19] R. Apéry, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61, Soc. Math. France, Paris, 1979, 11–13 | Zbl
[20] A. van der Poorten, “A proof that Euler missed ...Apéry's proof of the irrationality of $\zeta (3)$. An informal report”, Math. Intelligencer, 1:4 (1979), 195–203 | DOI | MR | Zbl
[21] B. Dubrovin, “Geometry and analytic theory of Frobenius manifolds”, Proceedings of the International congress of mathematicians, Vol. II (Berlin, 1998), Doc. Math., 1998, Extra Vol. II, 315–326 | MR | Zbl
[22] M. Eichler, D. Zagier, “On the zeros of the Weierstrass $\wp$-function”, Math. Ann., 258:4 (1982), 399–407 | DOI | MR | Zbl
[23] F. Brown, “Single-valued motivic periods and multiple zeta values”, Forum Math. Sigma, 2 (2014), e25, 37 pp. | DOI | MR | Zbl
[24] F. Brown, Irrationality proofs for zeta values, moduli spaces and dinner parties, 2014, arXiv: 1412.6508
[25] A. Givental, “A mirror theorem for toric complete intersections”, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., 160, Birkhäuser Boston, Boston, MA, 1998, 141–175 | MR | Zbl
[26] H. Iritani, “An integral structure in quantum cohomology and mirror symmetry for toric orbifolds”, Adv. Math., 222:3 (2009), 1016–1079 | DOI | MR | Zbl
[27] V. V. Przyjalkowski, “Weak Landau–Ginzburg models of smooth Fano threefolds”, Izv. Math., 77:4 (2013), 772–794 | DOI | DOI | MR | Zbl
[28] L. Katzarkov, M. Kontsevich, T. Pantev, Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models, 2014, arXiv: 1409.5996
[29] S. Galkin, $G$-Fano threefolds are mirror-modular, Preprint IPMU, 10-0150, 2010, 9 pp.
[30] S. Galkin, On Apery constants of homogeneous varieties, Preprint SFB45, 2008, 12 pp.
[31] C. van Enckevort, D. van Straten, “Monodromy calculations of fourth order equations of Calabi–Yau type”, Mirror symmetry V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 539–559 | MR | Zbl