Proof of the gamma conjecture for Fano 3-folds of Picard rank~1
Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 24-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We verify the (first) gamma conjecture, which relates the gamma class of a Fano variety to the asymptotics at infinity of the Frobenius solutions of its associated quantum differential equation, for all 17 of the deformation classes of Fano 3-folds of rank 1. This involves computing the corresponding limits (‘Frobenius limits’) for the Picard–Fuchs differential equations of Apéry type associated by mirror symmetry with the Fano families, and is achieved using two methods, one combinatorial and the other using the modular properties of the differential equations. The gamma conjecture for Fano 3-folds always contains a rational multiple of the number $\zeta(3)$. We present numerical evidence suggesting that higher Frobenius limits of Apéry-like differential equations may be related to multiple zeta values.
Keywords: Fano 3-fold.
Mots-clés : gamma class, gamma conjecture, Picard–Fuchs equation
@article{IM2_2016_80_1_a2,
     author = {V. V. Golyshev and D. Zagier},
     title = {Proof of the gamma conjecture for {Fano} 3-folds of {Picard} rank~1},
     journal = {Izvestiya. Mathematics },
     pages = {24--49},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a2/}
}
TY  - JOUR
AU  - V. V. Golyshev
AU  - D. Zagier
TI  - Proof of the gamma conjecture for Fano 3-folds of Picard rank~1
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 24
EP  - 49
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a2/
LA  - en
ID  - IM2_2016_80_1_a2
ER  - 
%0 Journal Article
%A V. V. Golyshev
%A D. Zagier
%T Proof of the gamma conjecture for Fano 3-folds of Picard rank~1
%J Izvestiya. Mathematics 
%D 2016
%P 24-49
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a2/
%G en
%F IM2_2016_80_1_a2
V. V. Golyshev; D. Zagier. Proof of the gamma conjecture for Fano 3-folds of Picard rank~1. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 24-49. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a2/

[1] V. Golyshev, “Classification problems and mirror duality”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 88–121 | DOI | MR | Zbl

[2] V. V. Przyjalkowski, “Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties”, Sb. Math., 198:9 (2007), 1325–1340 | DOI | DOI | MR | Zbl

[3] F. Beukers, “Irrationality proofs using modular forms”, Journées arithmétiques de Besançon (Besançon, 1985), Astérisque, 147/148, Soc. Math. France, Paris, 1987, 271–283 | MR | Zbl

[4] L. Katzarkov, M. Kontsevich, T. Pantev, “Hodge theoretic aspects of mirror symmetry”, From Hodge theory to integrability and TQFT $tt^*$-geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 87–174 | DOI | MR | Zbl

[5] S. Galkin, V. Golyshev, H. Iritani, Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures, 2014, arXiv: 1404.6407

[6] S. Mori, S. Mukai, “Classification of Fano 3-folds with $b_2\ge2$”, Manuscripta Math., 36:2 (1981), 147–162 | DOI | MR | Zbl

[7] V. A. Iskovskih, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 | DOI | MR | Zbl

[8] “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | MR | Zbl

[9] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry. V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | Zbl

[10] V. Golyshev, J. Stienstra, “Fuchsian equations of type DN”, Commun. Number Theory Phys., 1:2 (2007), 323–346 | DOI | MR | Zbl

[11] F. Beukers, “On Dwork's accessory parameter problem”, Math. Z., 241:2 (2002), 425–444 | DOI | MR | Zbl

[12] D. Zagier, “Integral solutions of Apéry-like recurrence equations”, Groups and symmetries, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 349–366 | MR | Zbl

[13] A. B. Givental, “Equivariant Gromov–Witten invariants”, Internat. Math. Res. Notices, 1996:13 (1996), 613–663 | DOI | MR | Zbl

[14] V. V. Przhijalkovskii, “Gromov–Witten invariants of Fano threefolds of genera 6 and 8”, Sb. Math., 198:3 (2007), 433–446 | DOI | DOI | MR | Zbl

[15] W. Fulton, C. Woodward, “On the quantum product of Schubert classes”, J. Algebraic Geom., 13:4 (2004), 641–661 | DOI | MR | Zbl

[16] A. Beauville, “Quantum cohomology of complete intersections”, Mat. Fiz. Anal. Geom., 2:3-4 (1995), 384–398 | MR | Zbl

[17] V. Golyshev, M. Vlasenko, Equations D3 and spectral elliptic curves, 2012, arXiv: 1212.0205

[18] V. V. Przyjalkowski, “Minimal Gromov–Witten rings”, Izv. Math., 72:6 (2008), 1253–1272 | DOI | DOI | MR | Zbl

[19] R. Apéry, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61, Soc. Math. France, Paris, 1979, 11–13 | Zbl

[20] A. van der Poorten, “A proof that Euler missed ...Apéry's proof of the irrationality of $\zeta (3)$. An informal report”, Math. Intelligencer, 1:4 (1979), 195–203 | DOI | MR | Zbl

[21] B. Dubrovin, “Geometry and analytic theory of Frobenius manifolds”, Proceedings of the International congress of mathematicians, Vol. II (Berlin, 1998), Doc. Math., 1998, Extra Vol. II, 315–326 | MR | Zbl

[22] M. Eichler, D. Zagier, “On the zeros of the Weierstrass $\wp$-function”, Math. Ann., 258:4 (1982), 399–407 | DOI | MR | Zbl

[23] F. Brown, “Single-valued motivic periods and multiple zeta values”, Forum Math. Sigma, 2 (2014), e25, 37 pp. | DOI | MR | Zbl

[24] F. Brown, Irrationality proofs for zeta values, moduli spaces and dinner parties, 2014, arXiv: 1412.6508

[25] A. Givental, “A mirror theorem for toric complete intersections”, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., 160, Birkhäuser Boston, Boston, MA, 1998, 141–175 | MR | Zbl

[26] H. Iritani, “An integral structure in quantum cohomology and mirror symmetry for toric orbifolds”, Adv. Math., 222:3 (2009), 1016–1079 | DOI | MR | Zbl

[27] V. V. Przyjalkowski, “Weak Landau–Ginzburg models of smooth Fano threefolds”, Izv. Math., 77:4 (2013), 772–794 | DOI | DOI | MR | Zbl

[28] L. Katzarkov, M. Kontsevich, T. Pantev, Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models, 2014, arXiv: 1409.5996

[29] S. Galkin, $G$-Fano threefolds are mirror-modular, Preprint IPMU, 10-0150, 2010, 9 pp.

[30] S. Galkin, On Apery constants of homogeneous varieties, Preprint SFB45, 2008, 12 pp.

[31] C. van Enckevort, D. van Straten, “Monodromy calculations of fourth order equations of Calabi–Yau type”, Mirror symmetry V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 539–559 | MR | Zbl