Central limit theorem on hyperbolic groups
Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 3-23

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a central limit theorem for random walks with finite variance on Gromov hyperbolic groups.
Keywords: central limit theorem, hyperbolic groups, boundaries, martingales, complete convergence, stationary measures.
Mots-clés : cocycles
@article{IM2_2016_80_1_a1,
     author = {Y. Benoist and J.-F. Quint},
     title = {Central limit theorem on hyperbolic groups},
     journal = {Izvestiya. Mathematics },
     pages = {3--23},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a1/}
}
TY  - JOUR
AU  - Y. Benoist
AU  - J.-F. Quint
TI  - Central limit theorem on hyperbolic groups
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 3
EP  - 23
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a1/
LA  - en
ID  - IM2_2016_80_1_a1
ER  - 
%0 Journal Article
%A Y. Benoist
%A J.-F. Quint
%T Central limit theorem on hyperbolic groups
%J Izvestiya. Mathematics 
%D 2016
%P 3-23
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a1/
%G en
%F IM2_2016_80_1_a1
Y. Benoist; J.-F. Quint. Central limit theorem on hyperbolic groups. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a1/