Central limit theorem on hyperbolic groups
Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a central limit theorem for random walks with finite variance on Gromov hyperbolic groups.
Keywords: central limit theorem, hyperbolic groups, boundaries, martingales, complete convergence, stationary measures.
Mots-clés : cocycles
@article{IM2_2016_80_1_a1,
     author = {Y. Benoist and J.-F. Quint},
     title = {Central limit theorem on hyperbolic groups},
     journal = {Izvestiya. Mathematics },
     pages = {3--23},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a1/}
}
TY  - JOUR
AU  - Y. Benoist
AU  - J.-F. Quint
TI  - Central limit theorem on hyperbolic groups
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 3
EP  - 23
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a1/
LA  - en
ID  - IM2_2016_80_1_a1
ER  - 
%0 Journal Article
%A Y. Benoist
%A J.-F. Quint
%T Central limit theorem on hyperbolic groups
%J Izvestiya. Mathematics 
%D 2016
%P 3-23
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a1/
%G en
%F IM2_2016_80_1_a1
Y. Benoist; J.-F. Quint. Central limit theorem on hyperbolic groups. Izvestiya. Mathematics , Tome 80 (2016) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/IM2_2016_80_1_a1/

[1] M. Björklund, “Central limit theorems for Gromov hyperbolic groups”, J. Theoret. Probab., 23:3 (2010), 871–887 | DOI | MR | Zbl

[2] S. Sawyer, T. Steger, “The rate of escape for anisotropic random walks in a tree”, Probab. Theory Related Fields, 76:2 (1987), 207–230 | DOI | MR | Zbl

[3] F. Ledrappier, “Some asymptotic properties of random walks on free groups”, Topics in probability and Lie groups: boundary theory, CRM Proc. Lecture Notes, 28, Amer. Math. Soc., Providence, RI, 2001, 117–152 | MR | Zbl

[4] Y. Benoist, J.-F. Quint, “Central limit theorem for linear groups”, Ann. Probab. (to appear)

[5] B. M. Brown, “Martingale central limit theorems”, Ann. Math. Statist., 42:1 (1971), 59–66 | DOI | MR | Zbl

[6] M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR | Zbl

[7] Sur les groupes hyperboliques d'après Mikhael Gromov, Progr. Math., 83, eds. E. Ghys, P. de la Harpe, Birkhäuser Boston, Inc., Boston, MA, 1990, xii+285 pp. | DOI | MR | Zbl

[8] M. Coornaert, A. Papadopoulos, Symbolic dynamics and hyperbolic groups, Lecture Notes in Math., 1539, Springer-Verlag, Berlin, 1993, viii+138 pp. | DOI | MR | Zbl

[9] J. Väisälä, “Gromov hyperbolic spaces”, Expo. Math., 23:3 (2005), 187–231 | DOI | MR | Zbl

[10] I. Holopainen, U. Lang, A. Vähäkangas, “Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces”, Math. Ann., 339:1 (2007), 101–134 | DOI | MR | Zbl

[11] P.-E. Caprace, Y. de Cornulier, N. Monod, R. Tessera, “Amenable hyperbolic groups”, J. Europ. Math. Soc., 17:11 (2015), 2903–2947 | DOI | Zbl

[12] V. A. Kaimanovich, “The Poisson formula for groups with hyperbolic properties”, Ann. of Math. (2), 152:3 (2000), 659–692 | DOI | MR | Zbl

[13] P. Haïssinsky, Marches aléatoires sur les groupes hyperboliques, Notes de cours, 2011, 67 pp. {http://web.univ-ubs.fr/lmam/matheus/emilfest.html}

[14] E. Le Page, “Théorèmes limites pour les produits de matrices aléatoires”, Probability measures on groups (Oberwolfach, 1981), Lecture Notes in Math., 928, Springer, Berlin–New York, 1982, 258–303 | MR | Zbl

[15] H. Furstenberg, Y. Kifer, “Random matrix products and measures on projective spaces”, Israel J. Math., 46:1-2 (1983), 12–32 | DOI | MR | Zbl

[16] Y. Guivarc'h, A. Raugi, “Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence”, Z. Wahrsch. Verw. Gebiete, 69:2 (1985), 187–242 | DOI | MR | Zbl

[17] P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, Progr. Probab. Statist., 8, Birkhäuser Boston, Inc., Boston, MA, 1985, xii+283 pp. | DOI | MR | Zbl

[18] A. Furman, “Random walks on groups and random transformations”, Handbook of dynamical systems, v. 1A, North-Holland, Amsterdam, 2002, 931–1014 | DOI | MR | Zbl

[19] Y. Benoist, J.-F. Quint, Random walk on reductive groups, 2013, 10 pp. http://www.math.u-bordeaux1.fr/~jquint

[20] J. M. Steele, “Kingman's subadditive ergodic theorem”, Ann. Inst. H. Poincaré Probab. Statist., 25:1 (1989), 93–98 | MR | Zbl

[21] H. Kesten, “Sums of stationary sequences cannot grow slower than linearly”, Proc. Amer. Math. Soc., 49 (1975), 205–211 | DOI | MR | Zbl

[22] P. L. Hsu, H. Robbins, “Complete convergence and the law of large numbers”, Proc. Nat. Acad. Sci. U. S. A., 33:2 (1947), 25–31 | DOI | MR | Zbl

[23] L. E. Baum, M. Katz, “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl

[24] P. Hall, C. C. Heyde, Martingale limit theory and its application, Acad. Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980, xii+308 pp. | MR | Zbl

[25] C. Berg, J. P. R. Christensen, “Sur la norme des opérateurs de convolution”, Invent. Math., 23:2 (1974), 173–178 | DOI | MR | Zbl

[26] H. Kesten, “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92:2 (1959), 336–354 | DOI | MR | Zbl

[27] Y. Derriennic, Y. Guivarc'h, “Théorème de renouvellement pour les groupes non moyennables”, C. R. Acad. Sci. Paris Sér. A-B, 277 (1973), A613–A615 | MR | Zbl