Decoupling systems of hydrodynamic type into subsystems with block-triangular interaction
Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1260-1293.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to systems of $n$ inhomogeneous equations of hydrodynamic type with two independent variables. Using a geometric formalism for such systems which goes back to Riemann, one can associate with every system of hydrodynamic type a vector field and a field of linear operators acting on an appropriate tangent bundle. In terms of these fields, we obtain a number of tests for inhomogeneous systems of hydrodynamic type to be decoupled into subsystems with block-triangular interaction. These tests supplement Bogoyavlenskii's well-known results on decoupling of homogeneous systems of hydrodynamic type into non-interacting subsystems.
Keywords: systems of hydrodynamic type, non-interacting subsystems, subsystems with block-triangular interaction, Nijenhuis tensor.
@article{IM2_2015_79_6_a6,
     author = {D. V. Tunitsky},
     title = {Decoupling systems of hydrodynamic type into subsystems with block-triangular interaction},
     journal = {Izvestiya. Mathematics },
     pages = {1260--1293},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a6/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Decoupling systems of hydrodynamic type into subsystems with block-triangular interaction
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 1260
EP  - 1293
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a6/
LA  - en
ID  - IM2_2015_79_6_a6
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Decoupling systems of hydrodynamic type into subsystems with block-triangular interaction
%J Izvestiya. Mathematics 
%D 2015
%P 1260-1293
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a6/
%G en
%F IM2_2015_79_6_a6
D. V. Tunitsky. Decoupling systems of hydrodynamic type into subsystems with block-triangular interaction. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1260-1293. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a6/

[1] B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124 | DOI | MR | Zbl

[2] O. I. Bogoyavlenskii, “Necessary conditions for the decoupling of systems of PDEs of arbitrary order”, Russian Math. Surveys, 60:1 (2005), 159–160 | DOI | DOI | MR | Zbl

[3] O. I. Bogoyavlenskij, “Block-diagonalizability problem for hydrodynamic type systems”, J. Math. Phys., 47:6 (2006), 063502, 9 pp. | DOI | MR | Zbl

[4] O. I. Bogoyavlenskij, “Decoupling problem for systems of quasi-linear pde's”, Comm. Math. Phys., 269:2 (2007), 545–556 | DOI | MR | Zbl

[5] R. Courant, D. Hilbert, Methods of mathematical physics, v. II, Partial differential equations, (vol. II by R. Courant), Interscience Publishers, a division of John Wiley Sons, New York–London, 1962, xxii+830 pp. | MR | MR | Zbl | Zbl

[6] O. I. Bogoyavlenskij, “Courant's problems and their extensions”, Hyperbolic problems: theory, numerics, applications (Zürich, 1998), v. I, Internat. Ser. Numer. Math., 129, Birkhäuser, Basel, 1999, 97–104 | MR | Zbl

[7] D. V. Tunitsky, “Reducing quasilinear systems to block triangular form”, Sb. Math., 204:3 (2013), 438–462 | DOI | DOI | MR | Zbl

[8] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A, 54, = Indagationes Math., 13 (1951), 200–212 | MR | Zbl

[9] J. Haantjes, “On $X_m$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A, 58, = Indagationes Math., 17 (1955), 158–162 | MR | Zbl

[10] M. Postnikov, Lectures in geometry. Semester II. Linear algebra and differential geometry, Mir Publishers, Moscow, 1982, 319 pp. | MR | Zbl

[11] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, Interscience Publishers, a division of John Wiley Sons, New York–London, 1963, xi+329 pp. | MR | MR | Zbl | Zbl

[12] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, IL–London, 1971, viii+270 pp. | MR | MR | Zbl | Zbl

[13] B. L. Rozhdestvenskii, N. N. Janenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983, xx+676 pp. | MR | MR | Zbl | Zbl

[14] O. I. Bogoyavlenskii, “General algebraic identities for the Nijenhuis and Haantjes tensors”, Izv. Math., 68:6 (2004), 1129–1141 | DOI | DOI | MR | Zbl

[15] O. I. Bogoyavlenskii, “Algebraic identities for the Nijenhuis tensors”, Differential Geom. Appl., 24:5 (2006), 447–457 | DOI | MR | Zbl

[16] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl