Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_6_a5, author = {A. R. Mirotin}, title = {On joint spectra of families of unbounded operators}, journal = {Izvestiya. Mathematics }, pages = {1235--1259}, publisher = {mathdoc}, volume = {79}, number = {6}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a5/} }
A. R. Mirotin. On joint spectra of families of unbounded operators. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1235-1259. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a5/
[1] I. Gelfand, D. Raikov, G. Shilov, Commutative normed rings, Chelsea Publishing Co., New York, 1964, 306 pp. | MR | MR | Zbl
[2] A. Ya. Helemskii, The homology of Banach and topological algebras, Math. Appl. (Soviet Ser.), 41, Kluwer Acad. Publ., Dordrecht, 1989, xx+334 pp. | DOI | MR | MR | Zbl | Zbl
[3] Z. Slodkowski, W. Zelazko, “On joint spectra of commuting families of operators”, Studia Math., 50:1 (1974), 127–148 | MR | Zbl
[4] A. R. Mirotin, “On some properties of the multidimensional Bochner–Phillips functional calculus”, Siberian Math. J., 52:6 (2011), 1032–1041 | DOI | MR
[5] A. R. Mirotin, “A joint spectral mapping theorem for sets of semigroup generators”, Funct. Anal. Appl., 46:3 (2012), 210–217 | DOI | DOI | MR | Zbl
[6] A. R. Mirotin, “Multivariable $\mathscr T$-calculus in generators of $C_0$-semigroups”, St. Petersburg Math. J., 11:2 (2000), 315–335 | MR | Zbl
[7] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, RI, 1957, xii+808 pp. | MR | MR | Zbl
[8] A. R. Mirotin, “On the $\mathscr T$-calculus of generators of $C_0$-semigroups”, Siberian Math. J., 39:3 (1998), 493–503 ; “Письмо в редакцию”, Сиб. матем. журн., 41:4 (2000), 960 | DOI | DOI | MR | MR | Zbl | Zbl
[9] “Letter to the editor”, Siberian Math. J., 41:4 (2000), 800 | DOI | DOI | MR | MR | Zbl | Zbl
[10] Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn, B. de Pagter, One-parameter semigroups, CWI Monogr., 5, North-Holland Publishing Co., Amsterdam, 1987, x+312 pp. | MR | MR | Zbl
[11] A. G. Baskakov, “Inequalities of Bernshtein type in abstract harmonic analysis”, Siberian Math. J., 20:5 (1979), 665–672 | DOI | MR | Zbl
[12] A. G. Baskakov, “Harmonic analysis of cosine and exponential operator-valued functions”, Math. USSR-Sb., 52:1 (1985), 63–90 | DOI | MR | Zbl
[13] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl
[14] J. van Neerven, “The asymptotic behaviour of semigroups of linear operators”, Oper. Theory Adv. Appl., 88, Birkhäuser Verlag, Basel, 1996, xii+237 pp. | DOI | MR | Zbl
[15] Y. Latushkin, S. Montgomery-Smith, “Evolutionary semigroups and Lyapunov theorems in Banach spaces”, J. Funct. Anal., 127:1 (1995), 173–197 | DOI | MR | Zbl
[16] C. J. K. Batty, “Asymptotic behaviour of semigroups of operators”, Functional analysis and operator theory (Warsaw, 1992), Banach Center Publ., 30, Polish Acad. Sci., Warsaw, 1994, 35–52 | MR | Zbl
[17] A. R. Mirotin, “Functions from the Schoenberg class $\mathscr T$ on the cone of dissipative elements of a Banach algebra”, Math. Notes, 61:4 (1997), 524–527 | DOI | DOI | MR | Zbl
[18] A. R. Mirotin, “Functions from the Schoenberg class $\mathscr T$ act in the cone of dissipative elements of a Banach algebra. II”, Math. Notes, 64:3 (1998), 364–370 | DOI | DOI | MR | Zbl
[19] A. R. Mirotin, “Properties of Bernstein functions of several complex variables”, Math. Notes, 93:2 (2013), 257–265 | DOI | DOI | MR | Zbl
[20] D. Applebaum, “Lévy processes – from probability to finance and quantum groups”, Notices Amer. Math. Soc., 51:11 (2004), 1336–1347 | MR | Zbl
[21] J. L. Taylor, “A joint spectrum for several commuting operators”, J. Funct. Anal., 6:2 (1970), 172–191 | DOI | MR | Zbl
[22] Z. Slodkowski, “An infinite family of joint spectra”, Studia Math., 61:3 (1977), 239–255 | MR | Zbl
[23] J. A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford Univ. Press, New York, 1985, x+245 pp. | MR | MR | Zbl
[24] A. T. Dash, “Joint spectra”, Studia Math., 45:3 (1973), 225–237 | MR | Zbl
[25] J. Dixmier, Von Neuman algebras, Transl. from the French, North-Holland Math. Library, 27, North-Holland Publishing Co., Amsterdam–New York, 1981, xxxviii+437 pp. | MR | Zbl
[26] J. T. Schwartz, $W^\star$-algebras, Gordon and Breach Science Publishers, New York–London–Paris, 1967, vi+256 pp. | MR | Zbl
[27] M. Sh. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl
[28] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[29] M. G. Kreĭn, A. A. Nudel'man, The Markov moment problem and extremal problems. Ideas and problems of P. L. C̆ebys̆ev and A. A. Markov and their further development, Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977, v+417 pp. | MR | MR | Zbl | Zbl
[30] E. Yu. Emel'yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups, Oper. Theory Adv. Appl., 173, Birkhäuser Verlag, Basel, 2007, viii+174 pp. | MR | Zbl
[31] W. Arendt, C. J. K. Batty, “Tauberian theorems and stability of one-parameter semigroups”, Trans. Amer. Math. Soc., 306:2 (1988), 837–852 | DOI | MR | Zbl
[32] Yu. I. Lyubich, Vũ Quôc Phóng, “Asymptotic stability of linear differential equations in Banach space”, Studia Math., 88:1 (1988), 37–42 | MR | Zbl