Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_6_a3, author = {A. M. Vershik and N. I. Nessonov}, title = {Stable representations of the infinite symmetric group}, journal = {Izvestiya. Mathematics }, pages = {1184--1214}, publisher = {mathdoc}, volume = {79}, number = {6}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a3/} }
A. M. Vershik; N. I. Nessonov. Stable representations of the infinite symmetric group. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1184-1214. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a3/
[1] G. I. Olshanskii, “Unitary representations of $(G,K)$-pairs connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl
[2] A. Yu. Okounkov, “Thoma's theorem and representations of the infinite bisymmetric group”, Funct. Anal. Appl., 28:2 (1994), 100–107 | DOI | MR | Zbl
[3] A. M. Vershik, S. V. Kerov, “Asymtotic theory of characters of the symmetric group”, Funct. Anal. Appl., 15:4 (1981), 246–255 | DOI | MR | Zbl
[4] A. M. Vershik, S. V. Kerov, “Characters and factor representations of the infinite symmetric group”, Soviet Math. Dokl., 23:2 (1981), 389–392 | MR | Zbl
[5] A. M. Vershik, “Nonfree actions of countable groups and their characters”, J. Math. Sci. (N. Y.), 174:1 (2011), 1–6 | DOI | MR | Zbl
[6] A. M. Vershik, “Totally nonfree actions and the infinite symmetric group”, Mosc. Math. J., 12:1 (2012), 193–212 | MR | Zbl
[7] A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries”, J. Math. Sci. (N. Y.), 209:6 (2015), 860–873 | DOI | Zbl
[8] A. G. Kurosh, Teoriya grupp, 3-e izd., Nauka, M., 1967, 648 pp. ; A. G. Kurosch, Gruppentheorie, v. I, Math. Lehrbücher und Monogr., III/I, 2., überarbeitete und erweiterte Aufl., Akademie-Verlag, Berlin, 1970, xxii+360 pp. ; v. II, Math. Lehrbücher und Monogr., III/II, 1972, xiv+358 pp. | MR | Zbl | MR | MR
[9] G. I. Olshansky, “Unitary representations of the infinite symmetric group: a semigroup approach”, Representations of Lie groups and Lie algebras (Budapest, 1971), Acad. Kiadó, Budapest, 1985, 181–197 | MR | Zbl
[10] G. I. Ol'shanskii, “On semigroups related to infinite-dimensional groups”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 67–101 | MR | Zbl
[11] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe”, Math. Z., 85:1 (1964), 40–61 | DOI | MR | Zbl
[12] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR | Zbl
[13] A. Yu. Okunkov, “O predstavleniyakh beskonechnoi simmetricheskoi gruppy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. II, Zap. nauchn. sem. POMI, 240, POMI, SPb., 1997, 166–228 ; A. Yu. Okounkov, “On representations of the infinite symmetric group”, J. Math. Sci. (New York), 96:5 (1999), 3550–3589 ; arXiv: math/9803037 | MR | Zbl | DOI
[14] A. M. Vershik, S. V. Kerov, “The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of $K_0$-functor of AF-algebras)”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 39–117 | MR | Zbl
[15] Yu. A. Neretin, “A remark on representations of infinite symmetric groups”, J. Math. Sci. (New York), 190:3 (2013), 464–467 | DOI | MR | Zbl
[16] N. I. Nessonov, “On realizations of representations of the infinite symmetric group”, J. Math. Sci. (New York), 190:3 (2013), 468–471 | DOI | MR | Zbl
[17] M. Takesaki, Theory of operator algebras, v. II, Encyclopaedia Math. Sci., 125, Springer-Verlag, Berlin, 2003, xxii+518 pp. | MR | Zbl
[18] J. Dixmier, Les $C^\star$-algèbres et leurs représentations, Cahiers Scientifiques, XXIX, 2ème éd., Gauthier-Villars, Paris, 1969, xv+390 pp. | MR | MR | Zbl | Zbl