Stable representations of the infinite symmetric group
Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1184-1214.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the notion of a stable unitary representation of a group (or a $\star$-representation of a $\mathbf C^\star$-algebra) with respect to some group of automorphisms of the group (or algebra). In the case of the group of finitary permutations of a countable set we give a complete description, up to quasi-equivalence, of the representations which are stable with respect to the group of all automorphisms of the group. In particular, we solve an old question concerning factor representations associated with Ol'shansky–Okun'kov admissible representations. It is proved that these representations are induced by factor representations of type ${\rm II}_1$ of two-block Young subgroups. The class of stable representations will be the subject of further research.
Keywords: infinite symmetric group, stable representations, factor representations, characters, semidirect product
Mots-clés : groupoid model.
@article{IM2_2015_79_6_a3,
     author = {A. M. Vershik and N. I. Nessonov},
     title = {Stable representations of the infinite symmetric group},
     journal = {Izvestiya. Mathematics },
     pages = {1184--1214},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a3/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - N. I. Nessonov
TI  - Stable representations of the infinite symmetric group
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 1184
EP  - 1214
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a3/
LA  - en
ID  - IM2_2015_79_6_a3
ER  - 
%0 Journal Article
%A A. M. Vershik
%A N. I. Nessonov
%T Stable representations of the infinite symmetric group
%J Izvestiya. Mathematics 
%D 2015
%P 1184-1214
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a3/
%G en
%F IM2_2015_79_6_a3
A. M. Vershik; N. I. Nessonov. Stable representations of the infinite symmetric group. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1184-1214. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a3/

[1] G. I. Olshanskii, “Unitary representations of $(G,K)$-pairs connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl

[2] A. Yu. Okounkov, “Thoma's theorem and representations of the infinite bisymmetric group”, Funct. Anal. Appl., 28:2 (1994), 100–107 | DOI | MR | Zbl

[3] A. M. Vershik, S. V. Kerov, “Asymtotic theory of characters of the symmetric group”, Funct. Anal. Appl., 15:4 (1981), 246–255 | DOI | MR | Zbl

[4] A. M. Vershik, S. V. Kerov, “Characters and factor representations of the infinite symmetric group”, Soviet Math. Dokl., 23:2 (1981), 389–392 | MR | Zbl

[5] A. M. Vershik, “Nonfree actions of countable groups and their characters”, J. Math. Sci. (N. Y.), 174:1 (2011), 1–6 | DOI | MR | Zbl

[6] A. M. Vershik, “Totally nonfree actions and the infinite symmetric group”, Mosc. Math. J., 12:1 (2012), 193–212 | MR | Zbl

[7] A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries”, J. Math. Sci. (N. Y.), 209:6 (2015), 860–873 | DOI | Zbl

[8] A. G. Kurosh, Teoriya grupp, 3-e izd., Nauka, M., 1967, 648 pp. ; A. G. Kurosch, Gruppentheorie, v. I, Math. Lehrbücher und Monogr., III/I, 2., überarbeitete und erweiterte Aufl., Akademie-Verlag, Berlin, 1970, xxii+360 pp. ; v. II, Math. Lehrbücher und Monogr., III/II, 1972, xiv+358 pp. | MR | Zbl | MR | MR

[9] G. I. Olshansky, “Unitary representations of the infinite symmetric group: a semigroup approach”, Representations of Lie groups and Lie algebras (Budapest, 1971), Acad. Kiadó, Budapest, 1985, 181–197 | MR | Zbl

[10] G. I. Ol'shanskii, “On semigroups related to infinite-dimensional groups”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 67–101 | MR | Zbl

[11] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe”, Math. Z., 85:1 (1964), 40–61 | DOI | MR | Zbl

[12] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR | Zbl

[13] A. Yu. Okunkov, “O predstavleniyakh beskonechnoi simmetricheskoi gruppy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. II, Zap. nauchn. sem. POMI, 240, POMI, SPb., 1997, 166–228 ; A. Yu. Okounkov, “On representations of the infinite symmetric group”, J. Math. Sci. (New York), 96:5 (1999), 3550–3589 ; arXiv: math/9803037 | MR | Zbl | DOI

[14] A. M. Vershik, S. V. Kerov, “The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of $K_0$-functor of AF-algebras)”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 39–117 | MR | Zbl

[15] Yu. A. Neretin, “A remark on representations of infinite symmetric groups”, J. Math. Sci. (New York), 190:3 (2013), 464–467 | DOI | MR | Zbl

[16] N. I. Nessonov, “On realizations of representations of the infinite symmetric group”, J. Math. Sci. (New York), 190:3 (2013), 468–471 | DOI | MR | Zbl

[17] M. Takesaki, Theory of operator algebras, v. II, Encyclopaedia Math. Sci., 125, Springer-Verlag, Berlin, 2003, xxii+518 pp. | MR | Zbl

[18] J. Dixmier, Les $C^\star$-algèbres et leurs représentations, Cahiers Scientifiques, XXIX, 2ème éd., Gauthier-Villars, Paris, 1969, xv+390 pp. | MR | MR | Zbl | Zbl