Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_6_a2, author = {V. M. Buchstaber and A. A. Kustarev}, title = {Embedding theorems for quasi-toric manifolds given by combinatorial data}, journal = {Izvestiya. Mathematics }, pages = {1157--1183}, publisher = {mathdoc}, volume = {79}, number = {6}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/} }
TY - JOUR AU - V. M. Buchstaber AU - A. A. Kustarev TI - Embedding theorems for quasi-toric manifolds given by combinatorial data JO - Izvestiya. Mathematics PY - 2015 SP - 1157 EP - 1183 VL - 79 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/ LA - en ID - IM2_2015_79_6_a2 ER -
V. M. Buchstaber; A. A. Kustarev. Embedding theorems for quasi-toric manifolds given by combinatorial data. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1157-1183. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/
[1] G. D. Mostow, “Equivariant embeddings in Euclidean space”, Ann. of Math. (2), 65:3 (1957), 432–446 | DOI | MR | Zbl
[2] R. S. Palais, “Imbedding of compact, differentiable transformation groups in orthogonal representations”, J. Math. Mech., 6 (1957), 673–678 | MR | Zbl
[3] G. Bredon, Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980, 440 pp. ; G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic Press, New York–London, 1972, xiii+459 pp. | MR | Zbl | MR | Zbl
[4] K. Kodaira, “On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties)”, Ann. of Math. (2), 60:1 (1954), 28–48 | DOI | MR | Zbl
[5] M. L. Gromov, “A topological technique for the construction of solutions of differential equations and inequalities”, Actes du Congrès International des Mathématiciens (Nice, 1970), v. 2, Gauthier-Villars, Paris, 1971, 221–225 | MR | Zbl
[6] D. Tischler, “Closed 2-forms and an embedding theorem for symplectic manifolds”, J. Differential Geometry, 12:2 (1977), 229–235 | MR | Zbl
[7] V. M. Buchstaber, T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002, viii+144 pp. | MR | Zbl
[8] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004, 272 pp. | MR | Zbl
[9] V. Buchstaber, T. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. ; arXiv: 1210.2368 | MR | Zbl
[10] V. I. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2(200) (1978), 85–134 | MR | Zbl
[11] G. Ewald, Combinatorial convexity and algebraic geometry, Grad. Texts in Math., 168, Springer-Verlag, New York, 1996, xiv+372 pp. | DOI | MR | Zbl
[12] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp. | MR | Zbl
[13] V. M. Buchstaber, S. Terzic, “$(2n, k)$-manifolds and applications”, Report No. 27/2014, Mathematisches Forschungsinstitut Oberwolfach, 2014, 11–14
[14] V. M. Buchstaber, S. Terzić, Towards the theory of $(2n,k)$-manifolds, 2014, arXiv: 1410.2.2482
[15] V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242 | MR | Zbl
[16] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[17] V. M. Bukhshtaber, T. E. Panov, “Deistviya torov, kombinatornaya topologiya i gomologicheskaya algebra”, UMN, 55:5(335) (2000), 3–106 | DOI | MR | Zbl
[18] V. M. Buchstaber, N. Ray, “An invitation to toric topology: vertex four of a remarkable tetrahedron”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 1–27 ; MIMS EPrint: 2008.31 http://eprints.ma.man.ac.uk/1055 | DOI | MR | Zbl
[19] M. W. Davis, “When are two Coxeter orbifolds diffeomorphic?”, Michigan Math. J., 63:2 (2014), 401–421 | DOI | MR | Zbl
[20] N. Yu. Erokhovets, “Teoriya invarianta Bukhshtabera simplitsialnykh kompleksov i vypuklykh mnogogrannikov”, Algebraicheskaya topologiya, vypuklye mnogogranniki i smezhnye voprosy, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Viktora Matveevicha Bukhshtabera, Tr. MIAN, 286, MAIK, M., 2014, 144–206 | DOI | Zbl
[21] N. Robertson, D. Sanders, P. Seymour, R. Thomas, “The four colour theorem”, J. Combin. Theory Ser. B, 70:1 (1997), 2–44 | DOI | MR | Zbl
[22] M. F. Atiyah, “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14:1 (1982), 1–15 | DOI | MR | Zbl
[23] Th. Delzant, “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116:3 (1988), 315–339 | MR | Zbl
[24] V. Guillemin, V. Ginzburg, Y. Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Math. Surveys Monogr., 98, Amer. Math. Soc., Providence, RI, 2002, viii+350 pp. | DOI | MR | Zbl
[25] A. Wasserman, “Equivariant differential topology”, Topology, 8:2 (1969), 127–150 | DOI | MR | Zbl
[26] W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | MR | Zbl
[27] Yu. Suyama, “Examples of toric manifolds which are not quasitoric manifolds”, Algebr. Geom. Topol. (to appear)
[28] V. M. Buchstaber, V. D. Volodin, “Combinatorial 2-truncated cubes and applications”, Associahedra, Tamari lattices and related structures, Progr. Math., 299, Birkhäuser/Springer, Basel, 2012, 161–186 | DOI | MR | Zbl