Embedding theorems for quasi-toric manifolds given by combinatorial data
Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1157-1183

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to problems on equivariant embeddings of quasi-toric manifolds in Euclidean and projective spaces. We construct explicit embeddings and give bounds for the dimensions of the embeddings in terms of combinatorial data that determine such manifolds. We show how familiar results on complex projective varieties in toric geometry can be obtained under additional restrictions on the combinatorial data.
Keywords: equivariant embedding, moment-angle manifold, characteristic function.
@article{IM2_2015_79_6_a2,
     author = {V. M. Buchstaber and A. A. Kustarev},
     title = {Embedding theorems for quasi-toric manifolds given by combinatorial data},
     journal = {Izvestiya. Mathematics },
     pages = {1157--1183},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - A. A. Kustarev
TI  - Embedding theorems for quasi-toric manifolds given by combinatorial data
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 1157
EP  - 1183
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/
LA  - en
ID  - IM2_2015_79_6_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A A. A. Kustarev
%T Embedding theorems for quasi-toric manifolds given by combinatorial data
%J Izvestiya. Mathematics 
%D 2015
%P 1157-1183
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/
%G en
%F IM2_2015_79_6_a2
V. M. Buchstaber; A. A. Kustarev. Embedding theorems for quasi-toric manifolds given by combinatorial data. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1157-1183. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/