Embedding theorems for quasi-toric manifolds given by combinatorial data
Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1157-1183
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to problems on equivariant embeddings of quasi-toric
manifolds in Euclidean and projective spaces. We construct explicit
embeddings and give bounds for the dimensions of the embeddings in terms
of combinatorial data that determine such manifolds. We show how
familiar results on complex projective varieties in toric geometry can
be obtained under additional restrictions on the combinatorial data.
Keywords:
equivariant embedding, moment-angle manifold, characteristic function.
@article{IM2_2015_79_6_a2,
author = {V. M. Buchstaber and A. A. Kustarev},
title = {Embedding theorems for quasi-toric manifolds given by combinatorial data},
journal = {Izvestiya. Mathematics },
pages = {1157--1183},
publisher = {mathdoc},
volume = {79},
number = {6},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/}
}
TY - JOUR AU - V. M. Buchstaber AU - A. A. Kustarev TI - Embedding theorems for quasi-toric manifolds given by combinatorial data JO - Izvestiya. Mathematics PY - 2015 SP - 1157 EP - 1183 VL - 79 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/ LA - en ID - IM2_2015_79_6_a2 ER -
V. M. Buchstaber; A. A. Kustarev. Embedding theorems for quasi-toric manifolds given by combinatorial data. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1157-1183. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a2/