Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures
Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1111-1156.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the first in a series of three. We give an explicit description of the ergodic decomposition of infinite Pickrell measures on the space of infinite complex matrices. A key role is played by the construction of $\sigma$-finite analogues of determinantal measures on spaces of configurations, including the infinite Bessel process, a scaling limit of the $\sigma$-finite analogues of the Jacobi orthogonal polynomial ensembles. Our main result identifies the infinite Bessel process with the decomposing measure of an infinite Pickrell measure.
Keywords: determinantal processes, infinite determinantal measures, ergodic decomposition, infinite harmonic analysis, infinite unitary group, scaling limits, Jacobi polynomials, Harish-Chandra–Itzykson–Zuber orbit integral.
@article{IM2_2015_79_6_a1,
     author = {A. I. Bufetov},
     title = {Infinite determinantal measures and the ergodic decomposition of infinite {Pickrell} measures. {I.} {Construction} of infinite determinantal measures},
     journal = {Izvestiya. Mathematics },
     pages = {1111--1156},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a1/}
}
TY  - JOUR
AU  - A. I. Bufetov
TI  - Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 1111
EP  - 1156
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a1/
LA  - en
ID  - IM2_2015_79_6_a1
ER  - 
%0 Journal Article
%A A. I. Bufetov
%T Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures
%J Izvestiya. Mathematics 
%D 2015
%P 1111-1156
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a1/
%G en
%F IM2_2015_79_6_a1
A. I. Bufetov. Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1111-1156. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a1/

[1] D. Pickrell, “Measures on infinite dimensional Grassmann manifolds”, J. Funct. Anal., 70:2 (1987), 323–356 | DOI | MR | Zbl

[2] D. M. Pickrell, “Mackey analysis of infinite classical motion groups”, Pacific J. Math., 150:1 (1991), 139–166 | DOI | MR | Zbl

[3] G. Ol'shanskii, A. Vershik, “Ergodic unitarily invariant measures on the space of infinite Hermitian matrices”, Contemporary mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 137–175 | MR | Zbl

[4] A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123 | DOI | MR | Zbl

[5] C. A. Tracy, H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309 | DOI | MR | Zbl

[6] A. I. Bufetov, “Finiteness of ergodic unitarily invariant measures on spaces of infinite matrices”, Ann. Inst. Fourier (Grenoble), 64:3 (2014), 893–907 ; arXiv: 1108.2737 | DOI | MR | Zbl

[7] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties”, Ann. Probab., 31:3 (2003), 1533–1564 | DOI | MR | Zbl

[8] A. I. Bufetov, “Multiplicative functionals of determinantal processes”, Russian Math. Surveys, 67:1 (2012), 181–182 | DOI | DOI | MR | Zbl

[9] A. I. Bufetov, “Infinite determinantal measures”, Electron. Res. Announc. Math. Sci., 20 (2013), 12–30 | DOI | MR | Zbl

[10] L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monogr., 6, Amer. Math. Soc., Providence, RI, 1963, iv+164 pp. | MR | MR | Zbl | Zbl

[11] Yu. A. Neretin, “Hua-type integrals over unitary groups and over projective limits of unitary groups”, Duke Math. J., 114:2 (2002), 239–266 | DOI | MR | Zbl

[12] P. Bourgade, A. Nikeghbali, A. Rouault, “Ewens measures on compact groups and hypergeometric kernels”, Séminaire de Probabilités XLIII, Lecture Notes in Math., 2006, Springer, Berlin, 2011, 351–377 | DOI | MR | Zbl

[13] A. I. Bufetov, “Beskonechnye determinantnye mery i ergodicheskoe razlozhenie beskonechnykh mer Pikrella. II”, Izv. RAN. Ser. matem. (to appear)

[14] A. I. Bufetov, “Beskonechnye determinantnye mery i ergodicheskoe razlozhenie beskonechnykh mer Pikrella. III”, Izv. RAN. Ser. matem. (to appear)

[15] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergeb. Math. Grenzgeb., 2, J. Springer, Berlin, 1933, v+62 pp. | MR | MR | Zbl | Zbl

[16] G. I. Olshanskii, “Unitary representations of infinite dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 269–463 ; {http://www.iitp.ru/upload/userpage/52/HoweForm.pdf} | MR | Zbl

[17] G. I. Olshanskii, Unitarnye predstavleniya beskonechnomernykh klassicheskikh grupp, Diss. ... dokt. fiz.-matem. nauk, In-t geografii AN SSSR, M., 1989, 271 pp. iitp.ru/upload/userpage/52/Olshanski_thesis.pdf

[18] A. I. Bufetov, “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group”, Sb. Math., 205:2 (2014), 192–219 ; Ergodic decomposition for measures quasi-invariant under Borel actions of inductively compact groups, arXiv: 1105.0664 | DOI | DOI | MR | Zbl

[19] D. Pickrell, “Separable representations of automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90:1 (1990), 1–26 | DOI | MR | Zbl

[20] A. M. Vershik, “Description of invariant measures for the actions of some infinite-dimensional groups”, Soviet Math. Dokl., 15:5 (1974), 1396–1400 | MR | Zbl

[21] M. Rabaoui, “Asymptotic harmonic analysis on the space of square complex matrices”, J. Lie Theory, 18:3 (2008), 645–670 | MR | Zbl

[22] M. Rabaoui, “A Bochner type theorem for inductive limits of Gelfand pairs”, Ann. Inst. Fourier (Grenoble), 58:5 (2008), 1551–1573 | DOI | MR | Zbl

[23] V. I. Bogachev, Measure theory, v. II, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl

[24] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes”, J. Funct. Anal., 205:2 (2003), 414–463 | DOI | MR | Zbl

[25] J. Faraut, Analyse sur les groupes de Lie. Une introduction, Calvage et Mounet, Paris, 2006, xi+313 pp. | Zbl

[26] J. Faraut, Analysis on Lie groups, Cambridge Stud. Adv. Math., 110, Cambridge Univ. Press, Cambridge, 2008, x+302 pp. | DOI | MR | Zbl

[27] S. Ghobber, Ph. Jaming, “Strong annihilating pairs for the Fourier–Bessel transform”, J. Math. Anal. Appl., 377:2 (2011), 501–515 | DOI | MR | Zbl

[28] S. Ghobber, Ph. Jaming, “Uncertainty principles for integral operators”, Studia Math., 220:3 (2014), 197–220 ; arXiv: 1206.1195v1 | DOI | MR | Zbl

[29] E. M. Baruch, The classical Hankel transform in the Kirillov model, arXiv: 1010.5184v1

[30] A. Lenard, “States of classical statistical mechanical systems of infinitely many particles. I”, Arch. Rational Mech. Anal., 59:3 (1975), 219–239 | DOI | MR

[31] A. Soshnikov, “Determinantal random point fields”, Russian Math. Surveys, 55:5 (2000), 923–975 | DOI | DOI | MR | Zbl

[32] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[33] Handbook of mathematical functions, National Bureau of Standards Applied Mathematics Series, 55, eds. M. Abramowitz, I. A. Stegun, Superintendent of Documents, U.S. Government Printing Office, Washington, DC, 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl

[34] D. J. Daley, D. Vere-Jones, An introduction to the theory of point processes, v. I, II, Probab. Appl. (N. Y.), 2nd ed., Springer-Verlag, New York, 2003, 2008, xxii+469 pp., xviii+573 pp. | DOI | MR | MR | Zbl

[35] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1–4, Mir, M., 1977, 1978, 1982, 1982, 357 s., 395 s., 445 s., 430 pp. ; M. Reed, B. Simon, Methods of modern mathematical physics, т. I, 2nd ed., Academic Press, Inc., New York–London, 1980, xv+400 с. ; v. II–IV, 1st ed., 1975, 1979, 1978, xv+361 pp., xv+463 pp., xv+396 pp. | MR | MR | MR | MR | Zbl | MR | Zbl | MR | MR | MR | Zbl

[36] B. Simon, Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005, viii+150 pp. | MR | Zbl

[37] A. M. Borodin, “Determinantal point processes”, The Oxford handbook of random matrix theory, Oxford Univ. Press, Oxford, 2011, 231–249 | MR | Zbl

[38] J. Ben Hough, M. Krishnapur, Y. Peres, B. Virág, “Determinantal processes and independence”, Probab. Surv., 3 (2006), 206–229 | DOI | MR | Zbl

[39] R. Lyons, “Determinantal probability measures”, Publ. Math. Inst. Hautes Études Sci., 98:1 (2003), 167–212 | DOI | MR | Zbl

[40] R. Lyons, J. E. Steif, “Stationary determinantal processes: phase multiplicity, Bernoullicity, entropy, and domination”, Duke Math. J., 120:3 (2003), 515–575 | DOI | MR | Zbl

[41] E. Lytvynov, “Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density”, Rev. Math. Phys., 14:10 (2002), 1073–1098 | DOI | MR | Zbl

[42] T. Shirai, Y. Takahashi, “Random point fields associated with fermion, boson and other statistics”, Stochastic analysis on large scale interacting systems, Adv. Stud. Pure Math., 39, Math. Soc. Japan, Tokyo, 2004, 345–354 | MR | Zbl

[43] G. Olshanski, “The quasi-invariance property for the Gamma kernel determinantal measure”, Adv. Math., 226:3 (2011), 2305–2350 | DOI | MR | Zbl

[44] O. Macchi, “The coincidence approach to stochastic point processes”, Advances in Appl. Probability, 7:1 (1975), 83–122 | DOI | MR | Zbl

[45] A. Borodin, E. M. Rains, “Eynard–Mehta theorem, Schur process, and their Pfaffian analogs”, J. Stat. Phys., 121:3-4 (2005), 291–317 | DOI | MR | Zbl