Characteristic properties and uniform non-amenability of $n$-periodic products of groups
Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1097-1110

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that $n$-periodic products (introduced by the first author in 1976) are uniquely characterized by certain quite specific properties. Using these properties, we prove that if a non-cyclic subgroup $H$ of the $n$-periodic product of a given family of groups is not conjugate to any subgroup of the product's components, then $H$ contains a subgroup isomorphic to the free Burnside group $B(2,n)$. This means that $H$ contains the free periodic groups $B(m,n)$ of any rank $m>2$, which lie in $B(2,n)$ ([1], Russian p. 26). Moreover, if $H$ is finitely generated, then it is uniformly non-amenable. We also describe all finite subgroups of $n$-periodic products.
Keywords: $n$-periodic product, free periodic group, uniform non-amenability, exponential growth.
Mots-clés : simple group, amenable group
@article{IM2_2015_79_6_a0,
     author = {S. I. Adian and Varuzhan Atabekyan},
     title = {Characteristic properties and uniform non-amenability of $n$-periodic products of groups},
     journal = {Izvestiya. Mathematics },
     pages = {1097--1110},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - Varuzhan Atabekyan
TI  - Characteristic properties and uniform non-amenability of $n$-periodic products of groups
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 1097
EP  - 1110
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a0/
LA  - en
ID  - IM2_2015_79_6_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A Varuzhan Atabekyan
%T Characteristic properties and uniform non-amenability of $n$-periodic products of groups
%J Izvestiya. Mathematics 
%D 2015
%P 1097-1110
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a0/
%G en
%F IM2_2015_79_6_a0
S. I. Adian; Varuzhan Atabekyan. Characteristic properties and uniform non-amenability of $n$-periodic products of groups. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1097-1110. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a0/