Characteristic properties and uniform non-amenability of $n$-periodic products of groups
Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1097-1110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that $n$-periodic products (introduced by the first author in 1976) are uniquely characterized by certain quite specific properties. Using these properties, we prove that if a non-cyclic subgroup $H$ of the $n$-periodic product of a given family of groups is not conjugate to any subgroup of the product's components, then $H$ contains a subgroup isomorphic to the free Burnside group $B(2,n)$. This means that $H$ contains the free periodic groups $B(m,n)$ of any rank $m>2$, which lie in $B(2,n)$ ([1], Russian p. 26). Moreover, if $H$ is finitely generated, then it is uniformly non-amenable. We also describe all finite subgroups of $n$-periodic products.
Keywords: $n$-periodic product, free periodic group, uniform non-amenability, exponential growth.
Mots-clés : simple group, amenable group
@article{IM2_2015_79_6_a0,
     author = {S. I. Adian and Varuzhan Atabekyan},
     title = {Characteristic properties and uniform non-amenability of $n$-periodic products of groups},
     journal = {Izvestiya. Mathematics },
     pages = {1097--1110},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - Varuzhan Atabekyan
TI  - Characteristic properties and uniform non-amenability of $n$-periodic products of groups
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 1097
EP  - 1110
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a0/
LA  - en
ID  - IM2_2015_79_6_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A Varuzhan Atabekyan
%T Characteristic properties and uniform non-amenability of $n$-periodic products of groups
%J Izvestiya. Mathematics 
%D 2015
%P 1097-1110
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a0/
%G en
%F IM2_2015_79_6_a0
S. I. Adian; Varuzhan Atabekyan. Characteristic properties and uniform non-amenability of $n$-periodic products of groups. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1097-1110. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a0/

[1] S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855 | DOI | DOI | MR | Zbl

[2] S. I. Adyan, “Periodic products of groups”, Proc. Steklov Inst. Math., 142 (1979), 1–19 | MR | Zbl

[3] S. I. Adyan, “Once more on periodic products of groups and on a problem of A. I. Mal'tsev”, Math. Notes, 88:6 (2010), 771–775 | DOI | DOI | MR | Zbl

[4] S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–New York, 1979, xi+311 pp. | MR | MR | Zbl | Zbl

[5] S. I. Adyan, “On the simplicity of periodic products of groups”, Soviet Math. Dokl., 19:4 (1978), 910–913 | MR | Zbl

[6] S. I. Adian, V. S. Atabekyan, “The Hopfian property of $n$-periodic products of groups”, Math. Notes, 95:4 (2014), 443–449 | DOI | DOI | MR | Zbl

[7] S. I. Adian, “New estimates of odd exponents of infinite Burnside groups”, Proc. Steklov Inst. Math., 289 (2015), 33–71 | DOI | DOI

[8] V. S. Atabekian, “On subgroups of free Burnside groups of odd exponent $n\ge 1003$”, Izv. Math., 73:5 (2009), 861–892 | DOI | DOI | MR | Zbl

[9] J. von Neumann, “Zur algemeinen theorie des maßes”, Fundam. Math., 13 (1929), 73–116 | Zbl

[10] A. Yu. Ol'shanskii, “On the problem of the existence of an invariant mean on a group”, Russian Math. Surveys, 35:4 (1980), 180–181 | DOI | MR | Zbl

[11] S. I. Adyan, “Random walks on free periodic groups”, Math. USSR-Izv., 21:3 (1983), 425–434 | DOI | MR | Zbl

[12] R. I. Grigorchuk, “Symmetrical random walks on discrete groups”, Multicomponent random systems, Adv. Probab. Related Topics, 6, eds. R. L. Dobrushin, Ya. G. Sinai, D. Griffeath, Marcel Dekker, Inc., New York, 1980, 285–325 | MR | MR | Zbl

[13] E. Følner, “On groups with full Banach mean value”, Math. Scand., 3 (1955), 243–254 | MR | Zbl

[14] V. S. Atabekyan, “Uniform nonamenability of subgroups of free Burnside groups of odd period”, Math. Notes, 85:4 (2009), 496–502 | DOI | DOI | MR | Zbl

[15] D. V. Osin, “Uniform non-amenability of free Burnside groups”, Arch. Math. (Basel), 88:5 (2007), 403–412 | DOI | MR | Zbl

[16] V. S. Atabekyan, “Monomorphisms of free Burnside groups”, Math. Notes, 86:4 (2009), 457–462 | DOI | DOI | MR | Zbl

[17] G. N. Arzhantseva, J. Burillo, M. Lustig, L. Reeves, H. Short, E. Ventura, “Uniform non-amenability”, Adv. Math., 197:2 (2005), 499–522 | DOI | MR | Zbl

[18] P. de la Harpe, “Uniform growth in groups of exponential growth”, Geom. Dedicata, 95 (2002), 1–17 | DOI | MR | Zbl

[19] S. I. Adyan, I. G. Lysenok, “On groups all of whose proper subgroups are finite cyclic”, Math. USSR-Izv., 39:2 (1992), 905–957 | DOI | MR | Zbl

[20] V. S. Atabekyan, “On normal subgroups in the periodic products of S. I. Adian”, Proc. Steklov Inst. Math., 274 (2011), 9–24 | DOI | MR | Zbl