Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_5_a8, author = {I. A. Rudakov}, title = {Periodic solutions of the quasilinear equation of forced beam vibrations with homogeneous boundary conditions}, journal = {Izvestiya. Mathematics }, pages = {1064--1086}, publisher = {mathdoc}, volume = {79}, number = {5}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a8/} }
TY - JOUR AU - I. A. Rudakov TI - Periodic solutions of the quasilinear equation of forced beam vibrations with homogeneous boundary conditions JO - Izvestiya. Mathematics PY - 2015 SP - 1064 EP - 1086 VL - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a8/ LA - en ID - IM2_2015_79_5_a8 ER -
I. A. Rudakov. Periodic solutions of the quasilinear equation of forced beam vibrations with homogeneous boundary conditions. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 1064-1086. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a8/
[1] V. M. Babich, N. S. Grigoreva, Ortogonalnye razlozheniya i metod Fure, Izd-vo Leningr. un-ta, L., 1983, 240 pp. | MR | Zbl
[2] V. P. Pikulin, S. I. Pohozaev, Equations in mathematical physics. A practical course, Birkhäuser Verlag, Basel, 2001, viii+207 pp. | MR | Zbl
[3] L. Collatz, Eigenwertaufgaben mit technischen Anwendungen, Zweite, durchgesehene Aufl., Akademische Verlagsgesellschaft Geest Portig K.-G., Leipzig, 1963, xiv+500 pp. | MR | MR | Zbl | Zbl
[4] E. Feireisl, “Time periodic solutions to a semilinear beam equation”, Nonlinear Anal., 12:3 (1988), 279–290 | DOI | MR | Zbl
[5] K. C. Chang, L. Sanchez, “Nontrivial periodic solutions of a nonlinear beam equation”, Math. Methods Appl. Sci., 4:1 (1982), 194–205 | DOI | MR | Zbl
[6] I. A. Rudakov, “Nonlinear equations satisfying the nonresonance condition”, J. Math. Sci. (N. Y.), 135:1 (2006), 2749–2763 | DOI | MR | Zbl
[7] I. A. Rudakov, “Periodic solutions of the quasilinear beam vibration equation with homogeneous boundary conditions”, Differ. Equ., 48:6 (2012), 820–831 | DOI | MR | Zbl
[8] P. H. Rabinowitz, “Multiple critical points of perturbed symmetric functionals”, Trans. Amer. Math. Soc., 272:2 (1982), 753–769 | DOI | MR | Zbl
[9] K. Tanaka, “Infinitely many periodic solutions for the equation: $u_{tt}-u_{xx}\pm|u|^{p-1}u=f(x,t)$. II”, Trans. Amer. Math. Soc., 307:2 (1988), 615–645 | DOI | MR | Zbl
[10] A. Bahri, H. Berestycki, “A perturbation method in critical point theory and applications”, Trans. Amer. Math. Soc., 267:1 (1981), 1–32 | DOI | MR | Zbl
[11] J. T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York–London–Paris, 1969, vii+236 pp. | MR | Zbl
[12] V. A. Sadovnichii, Teoriya operatorov, 4-e izd., Drofa, M., 2001, 384 pp. | MR | Zbl
[13] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | MR | MR | Zbl