Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_5_a6, author = {Ph. Lebacque and A. Schmidt}, title = {The $K(\pi,1)$-property for smooth marked curves over finite fields}, journal = {Izvestiya. Mathematics }, pages = {1043--1050}, publisher = {mathdoc}, volume = {79}, number = {5}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a6/} }
Ph. Lebacque; A. Schmidt. The $K(\pi,1)$-property for smooth marked curves over finite fields. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 1043-1050. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a6/
[1] A. Schmidt, “Rings of integers of type $K(\pi,1)$”, Doc. Math., 12 (2007), 441–471 (electronic) | MR | Zbl
[2] A. Schmidt, “On the $K(\pi,1)$-property for rings of integers in the mixed case”, Algebraic number theory and related topics 2007, RIMS Kôkyûroku Bessatsu, B12, Res. Inst. Math. Sci. (RIMS), Kyoto, 2009, 91–100 | MR | Zbl
[3] A. Schmidt, “Über Pro-$p$-Fundamentalgruppen markierter arithmetischer Kurven”, J. Reine Angew. Math., 2010:640 (2010), 203–235 | DOI | MR | Zbl
[4] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, Grundlehren Math. Wiss., 323, 2nd ed., 2nd corr. print., Springer-Verlag, Berlin, 2013, 826 pp. | DOI | MR | Zbl
[5] M. Artin, P. Deligne, {T}héorie des topos et cohomologie étale des schémas. Tome 3, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de P. Deligne, B. Saint-Donat, Lecture Notes in Math., 305, Springer-Verlag, Berlin–New York, 1973, vi+640 pp. | DOI | MR | Zbl
[6] Y. Ihara, “How many primes decompose completely in an infinite unramified Galois extension of a global field?”, J. Math. Soc. Japan, 35:4 (1983), 693–709 | DOI | MR | Zbl