The $K(\pi,1)$-property for smooth marked curves over finite fields
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 1043-1050
Voir la notice de l'article provenant de la source Math-Net.Ru
In the case of smooth marked curves $(X,T)$ over finite fields
of characteristic $p$, we study the $K(\pi,1)$-property for $p$.
We prove that $(X,T)$ has the $K(\pi,1)$-property if $X$ is affine,
and give positive and negative examples in the case when $X$ is
proper. We also consider the case of unmarked proper curves over
a finite field of characteristic different from $p$.
Keywords:
Galois cohomology, étale cohomology, restricted ramification.
@article{IM2_2015_79_5_a6,
author = {Ph. Lebacque and A. Schmidt},
title = {The $K(\pi,1)$-property for smooth marked curves over finite fields},
journal = {Izvestiya. Mathematics },
pages = {1043--1050},
publisher = {mathdoc},
volume = {79},
number = {5},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a6/}
}
Ph. Lebacque; A. Schmidt. The $K(\pi,1)$-property for smooth marked curves over finite fields. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 1043-1050. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a6/