Multi-colour dynamical tilings of tori into bounded remainder sets
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 919-954

Voir la notice de l'article provenant de la source Math-Net.Ru

We use tilings of multi-dimensional tori to construct bounded remainder sets that are finite unions of convex polyhedra. For the deviations of the distribution of points in the orbits with respect to translations of the torus over these sets, we prove a multi-dimensional version of Hecke's theorem on the distribution of fractional parts on a circle.
Keywords: multi-dimensional Hecke theorem, bounded remainder sets, polyhedra.
@article{IM2_2015_79_5_a3,
     author = {V. G. Zhuravlev},
     title = {Multi-colour dynamical tilings of tori into bounded remainder sets},
     journal = {Izvestiya. Mathematics },
     pages = {919--954},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Multi-colour dynamical tilings of tori into bounded remainder sets
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 919
EP  - 954
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a3/
LA  - en
ID  - IM2_2015_79_5_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Multi-colour dynamical tilings of tori into bounded remainder sets
%J Izvestiya. Mathematics 
%D 2015
%P 919-954
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a3/
%G en
%F IM2_2015_79_5_a3
V. G. Zhuravlev. Multi-colour dynamical tilings of tori into bounded remainder sets. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 919-954. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a3/