Multi-colour dynamical tilings of tori into bounded remainder sets
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 919-954.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use tilings of multi-dimensional tori to construct bounded remainder sets that are finite unions of convex polyhedra. For the deviations of the distribution of points in the orbits with respect to translations of the torus over these sets, we prove a multi-dimensional version of Hecke's theorem on the distribution of fractional parts on a circle.
Keywords: multi-dimensional Hecke theorem, bounded remainder sets, polyhedra.
@article{IM2_2015_79_5_a3,
     author = {V. G. Zhuravlev},
     title = {Multi-colour dynamical tilings of tori into bounded remainder sets},
     journal = {Izvestiya. Mathematics },
     pages = {919--954},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Multi-colour dynamical tilings of tori into bounded remainder sets
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 919
EP  - 954
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a3/
LA  - en
ID  - IM2_2015_79_5_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Multi-colour dynamical tilings of tori into bounded remainder sets
%J Izvestiya. Mathematics 
%D 2015
%P 919-954
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a3/
%G en
%F IM2_2015_79_5_a3
V. G. Zhuravlev. Multi-colour dynamical tilings of tori into bounded remainder sets. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 919-954. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a3/

[1] E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod. eins”, Abh. Math. Sem. Univ. Hamburg, 1:1 (1922), 54–76 | DOI | MR | Zbl

[2] I. Oren, “Admissible functions with multiple discontinuities”, Proceedings of the Special Seminar on Topology (Mexico City, 1980/1981), v. I, Univ. Nac. Autónoma México, Mexico City, 1981, 217–230 | MR | Zbl

[3] P. Szüsz, A. Rényi, “Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar., 5:1-2 (1954), 35–39 | DOI | MR | Zbl

[4] P. Liardet, “Regularities of distribution”, Compositio Math., 61:3 (1987), 267–293 | MR | Zbl

[5] G. Rauzy, “Ensembles à restes bornés”, Séminaire de théorie des nombres de Bordeaux, 1983–1984 (Talence, 1983/1984), Exp. No. 24, Univ. Bordeaux I, Talence, 1984, 12 pp | MR | Zbl

[6] S. Ferenczi, “Bounded remainder sets”, Acta Arith., 61:4 (1992), 319–326 | MR | Zbl

[7] V. G. Zhuravlev, “Rauzy tilings and bounded remainder sets on the torus”, J. Math. Sci. (N. Y.), 137:2 (2006), 4658–4672 | DOI | MR | Zbl

[8] V. G. Zhuravlev, “Multidimensional Hecke theorem on the distribution of fractional parts”, St. Petersburg Math. J., 24:1 (2013), 71–97 | DOI | MR | Zbl

[9] V. G. Zhuravlev, “Exchanged toric developments and bounded remainder sets”, J. Math. Sci. (N. Y.), 184:6 (2012), 716–745 | DOI | MR | Zbl

[10] V. G. Zhuravlev, “Bounded remainder polyhedra”, Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S71–S90 | DOI | DOI | Zbl

[11] G. F. Voronoi, Sobranie sochinenii, v. 2, Izd-vo AN USSR, Kiev, 1952, 391 pp. | MR | Zbl

[12] E. S. Fedorov, Nachala ucheniya o figurakh, Izd-vo AN SSSR, M., 1953, 410 pp. | MR

[13] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl

[14] V. G. Zhuravlev, “Moduli of toric tilings into bounded remainder sets and balanced words”, St. Petersburg Math. J., 24:4 (2013), 601–629 | DOI | MR | Zbl