Inequalities for harmonic measures with respect to non-overlapping domains
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 902-918.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_{1}$ and $B_{2}$ be the components of the complement of a closed Jordan curve $\Gamma\subset\overline{\mathbb{C}}$, and let $E(r)=\{z\colon |z-z_{0}|\leqslant r\}$, where $z_{0}\in\Gamma$. We extend the known inequality for the harmonic measures of $\Gamma\cap E(r)$ with respect to $B_{1}$ and $B_{2}$ to the case of an arbitrary number of pairwise non-overlapping domains $B_{k}$, $k=1,\dots,n$, and prove analogous inequalities for the harmonic measures of sets concentrated in several discs or continua $E_{l}(r)$, $l=1,\dots,m$, of a given logarithmic capacity. We also establish bounds for these measures in terms of the Schwarzian derivatives of functions that conformally map the domains $B_{k}$ onto the unit disc.
Keywords: harmonic measure, condenser capacity, logarithmic capacity, Schwarzian derivative.
@article{IM2_2015_79_5_a2,
     author = {V. N. Dubinin},
     title = {Inequalities for harmonic measures with respect to non-overlapping domains},
     journal = {Izvestiya. Mathematics },
     pages = {902--918},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a2/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Inequalities for harmonic measures with respect to non-overlapping domains
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 902
EP  - 918
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a2/
LA  - en
ID  - IM2_2015_79_5_a2
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Inequalities for harmonic measures with respect to non-overlapping domains
%J Izvestiya. Mathematics 
%D 2015
%P 902-918
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a2/
%G en
%F IM2_2015_79_5_a2
V. N. Dubinin. Inequalities for harmonic measures with respect to non-overlapping domains. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 902-918. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a2/

[1] C. J. Bishop, L. Carleson, J. B. Garnett, P. W. Jones, “Harmonic measures supported on curves”, Pacific J. Math., 138:2 (1989), 233–236 | DOI | MR | Zbl

[2] A. Beurling, Études sur un problème de majoration, Thèse pour le doctorat, Almquist Wieksell, Uppsala, 1933, 109 pp. | Zbl

[3] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl

[4] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii. II”, Algebra i analiz, 9:5 (1997), 1–50 ; G. V. Kuz'mina, “Methods of the geometric theory of functions. II”, St. Petersburg Math. J., 9:5 (1998), 889–930 | MR | Zbl

[5] V. H. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009, 390 pp.

[6] V. N. Dubinin, “O privedennom module kompleksnoi sfery”, Sib. matem. zhurn., 55:5 (2014), 1078–1090 | MR | Zbl

[7] J. B. Garnett, D. E. Marshall, Harmonic measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005, xvi+571 pp. | DOI | MR | Zbl

[8] V. N. Dubinin, “Nekotorye svoistva vnutrennego privedennogo modulya”, Sib. matem. zhurn., 35:4 (1994), 774–792 | MR | Zbl

[9] V. N. Dubinin, M. Vuorinen, “An extremal decomposition problem for harmonic measure”, Proc. Amer. Math. Soc., 140:7 (2012), 2441–2446 | DOI | MR | Zbl

[10] M. Marcus, “Radial averaging of domains, estimates for Dirichlet integrals and applications”, J. Anal. Math., 27:1 (1974), 47–78 | DOI | MR | Zbl

[11] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, 2-e izd., Nauka, M., 1970, 304 pp. ; N. I. Akhiezer, Elements of the theory of elliptic functions, Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990, vii+237 pp. | MR | Zbl | MR | Zbl

[12] W. von Koppenfels, F. Stallmann, Praxis der konformen Abbildung, Grundlehren Math. Wiss., 100, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, xiii+375 pp. | MR | Zbl | Zbl