Inequalities for harmonic measures with respect to non-overlapping domains
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 902-918

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_{1}$ and $B_{2}$ be the components of the complement of a closed Jordan curve $\Gamma\subset\overline{\mathbb{C}}$, and let $E(r)=\{z\colon |z-z_{0}|\leqslant r\}$, where $z_{0}\in\Gamma$. We extend the known inequality for the harmonic measures of $\Gamma\cap E(r)$ with respect to $B_{1}$ and $B_{2}$ to the case of an arbitrary number of pairwise non-overlapping domains $B_{k}$, $k=1,\dots,n$, and prove analogous inequalities for the harmonic measures of sets concentrated in several discs or continua $E_{l}(r)$, $l=1,\dots,m$, of a given logarithmic capacity. We also establish bounds for these measures in terms of the Schwarzian derivatives of functions that conformally map the domains $B_{k}$ onto the unit disc.
Keywords: harmonic measure, condenser capacity, logarithmic capacity, Schwarzian derivative.
@article{IM2_2015_79_5_a2,
     author = {V. N. Dubinin},
     title = {Inequalities for harmonic measures with respect to non-overlapping domains},
     journal = {Izvestiya. Mathematics },
     pages = {902--918},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a2/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Inequalities for harmonic measures with respect to non-overlapping domains
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 902
EP  - 918
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a2/
LA  - en
ID  - IM2_2015_79_5_a2
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Inequalities for harmonic measures with respect to non-overlapping domains
%J Izvestiya. Mathematics 
%D 2015
%P 902-918
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a2/
%G en
%F IM2_2015_79_5_a2
V. N. Dubinin. Inequalities for harmonic measures with respect to non-overlapping domains. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 902-918. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a2/