Calculus of variations in the large, existence of trajectories in a~domain with boundary, and Whitney's inverted pendulum problem
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 894-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

For non-autonomous Lagrangian systems we introduce the notion of a dynamically convex domain with respect to the Lagrangian. We establish the solubility of boundary-value problems in compact dynamically convex domains. If the Lagrangian is time-periodic, then such a domain contains a periodic trajectory. The proofs use the Hamilton principle and known tools of the calculus of variations in the large. Our general results are applied to Whitney's problem on the existence of motions of an inverted pendulum without falls.
Keywords: Lagrangian system, dynamically convex domain, Whitney's problem.
Mots-clés : Hamilton principle, Palais–Smale condition
@article{IM2_2015_79_5_a1,
     author = {S. V. Bolotin and V. V. Kozlov},
     title = {Calculus of variations in the large, existence of trajectories in a~domain with boundary, and {Whitney's} inverted pendulum problem},
     journal = {Izvestiya. Mathematics },
     pages = {894--901},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/}
}
TY  - JOUR
AU  - S. V. Bolotin
AU  - V. V. Kozlov
TI  - Calculus of variations in the large, existence of trajectories in a~domain with boundary, and Whitney's inverted pendulum problem
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 894
EP  - 901
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/
LA  - en
ID  - IM2_2015_79_5_a1
ER  - 
%0 Journal Article
%A S. V. Bolotin
%A V. V. Kozlov
%T Calculus of variations in the large, existence of trajectories in a~domain with boundary, and Whitney's inverted pendulum problem
%J Izvestiya. Mathematics 
%D 2015
%P 894-901
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/
%G en
%F IM2_2015_79_5_a1
S. V. Bolotin; V. V. Kozlov. Calculus of variations in the large, existence of trajectories in a~domain with boundary, and Whitney's inverted pendulum problem. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 894-901. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/

[1] J. N. Mather, “Variational construction of connecting orbits”, Ann. Inst. Fourier (Grenoble), 43:5 (1993), 1349–1386 | DOI | MR | Zbl

[2] R. Courant, H. Robbins, What is mathematics? An elementary approach to ideas and methods, 2nd ed., Oxford Univ. Press, New York, 1996, xxv+566 pp. | MR | Zbl | Zbl

[3] I. Yu. Polekhin, “Primery ispolzovaniya topologicheskikh metodov v zadache o perevernutom mayatnike na podvizhnom osnovanii”, Nelineinaya dinam., 10:4 (2014), 465–472 | Zbl

[4] O. Zubelevich, Bounded solutions to the system of 2-nd order ODE and the Whitney pendulum, 2015, arXiv: 1502.04306

[5] V. I. Arnold, Chto takoe matematika?, MTsNMO, M., 2002, 104 pp.

[6] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | MR | MR | Zbl | Zbl

[7] R. S. Palais, S. Smale, “A generalized Morse theory”, Bull. Amer. Math. Soc., 70 (1964), 165–172 | DOI | MR | Zbl