Mots-clés : Palais–Smale condition
@article{IM2_2015_79_5_a1,
author = {S. V. Bolotin and V. V. Kozlov},
title = {Calculus of variations in the large, existence of trajectories in a~domain with boundary, and {Whitney's} inverted pendulum problem},
journal = {Izvestiya. Mathematics},
pages = {894--901},
year = {2015},
volume = {79},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/}
}
TY - JOUR AU - S. V. Bolotin AU - V. V. Kozlov TI - Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem JO - Izvestiya. Mathematics PY - 2015 SP - 894 EP - 901 VL - 79 IS - 5 UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/ LA - en ID - IM2_2015_79_5_a1 ER -
%0 Journal Article %A S. V. Bolotin %A V. V. Kozlov %T Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem %J Izvestiya. Mathematics %D 2015 %P 894-901 %V 79 %N 5 %U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/ %G en %F IM2_2015_79_5_a1
S. V. Bolotin; V. V. Kozlov. Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem. Izvestiya. Mathematics, Tome 79 (2015) no. 5, pp. 894-901. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/
[1] J. N. Mather, “Variational construction of connecting orbits”, Ann. Inst. Fourier (Grenoble), 43:5 (1993), 1349–1386 | DOI | MR | Zbl
[2] R. Courant, H. Robbins, What is mathematics? An elementary approach to ideas and methods, 2nd ed., Oxford Univ. Press, New York, 1996, xxv+566 pp. | MR | Zbl | Zbl
[3] I. Yu. Polekhin, “Primery ispolzovaniya topologicheskikh metodov v zadache o perevernutom mayatnike na podvizhnom osnovanii”, Nelineinaya dinam., 10:4 (2014), 465–472 | Zbl
[4] O. Zubelevich, Bounded solutions to the system of 2-nd order ODE and the Whitney pendulum, 2015, arXiv: 1502.04306
[5] V. I. Arnold, Chto takoe matematika?, MTsNMO, M., 2002, 104 pp.
[6] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | MR | MR | Zbl | Zbl
[7] R. S. Palais, S. Smale, “A generalized Morse theory”, Bull. Amer. Math. Soc., 70 (1964), 165–172 | DOI | MR | Zbl