Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_5_a1, author = {S. V. Bolotin and V. V. Kozlov}, title = {Calculus of variations in the large, existence of trajectories in a~domain with boundary, and {Whitney's} inverted pendulum problem}, journal = {Izvestiya. Mathematics }, pages = {894--901}, publisher = {mathdoc}, volume = {79}, number = {5}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/} }
TY - JOUR AU - S. V. Bolotin AU - V. V. Kozlov TI - Calculus of variations in the large, existence of trajectories in a~domain with boundary, and Whitney's inverted pendulum problem JO - Izvestiya. Mathematics PY - 2015 SP - 894 EP - 901 VL - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/ LA - en ID - IM2_2015_79_5_a1 ER -
%0 Journal Article %A S. V. Bolotin %A V. V. Kozlov %T Calculus of variations in the large, existence of trajectories in a~domain with boundary, and Whitney's inverted pendulum problem %J Izvestiya. Mathematics %D 2015 %P 894-901 %V 79 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/ %G en %F IM2_2015_79_5_a1
S. V. Bolotin; V. V. Kozlov. Calculus of variations in the large, existence of trajectories in a~domain with boundary, and Whitney's inverted pendulum problem. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 894-901. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a1/
[1] J. N. Mather, “Variational construction of connecting orbits”, Ann. Inst. Fourier (Grenoble), 43:5 (1993), 1349–1386 | DOI | MR | Zbl
[2] R. Courant, H. Robbins, What is mathematics? An elementary approach to ideas and methods, 2nd ed., Oxford Univ. Press, New York, 1996, xxv+566 pp. | MR | Zbl | Zbl
[3] I. Yu. Polekhin, “Primery ispolzovaniya topologicheskikh metodov v zadache o perevernutom mayatnike na podvizhnom osnovanii”, Nelineinaya dinam., 10:4 (2014), 465–472 | Zbl
[4] O. Zubelevich, Bounded solutions to the system of 2-nd order ODE and the Whitney pendulum, 2015, arXiv: 1502.04306
[5] V. I. Arnold, Chto takoe matematika?, MTsNMO, M., 2002, 104 pp.
[6] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | MR | MR | Zbl | Zbl
[7] R. S. Palais, S. Smale, “A generalized Morse theory”, Bull. Amer. Math. Soc., 70 (1964), 165–172 | DOI | MR | Zbl