On a class of random perturbations of the hierarchical Laplacian
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 859-893

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,d)$ be a locally compact separable ultrametric space. Given a measure $m$ on $X$ and a function $C(B)$ defined on the set $B$ of all balls of positive measure of $X$, we consider the hierarchical Laplacian $L=L_{C}$. The operator $L$ acts on $L^{2}(X,m)$. It is essentially self-adjoint and has a pure point spectrum. By choosing a family $\{\varepsilon (B)\}$ of independent identically distributed random variables, we define the perturbed function $C(B,\omega)$ and the perturbed hierarchical Laplacian $L^{\omega }=L_{C(\omega)}$. We study the arithmetic means $\bar{\lambda }(\omega)$ of the eigenvalues of $L^{\omega }$. Under some mild assumptions the normalized arithmetic means $( \bar{\lambda }-\mathbb{E}\bar{\lambda })/\sigma [\bar{\lambda }]$ converge to $N(0,1)$ in distribution. We also give examples when the normal convergence fails. We prove the existence of an integrated density of states. Introducing an empirical point process $N^{\omega }$ for the eigenvalues of $L^{\omega }$ and assuming that the density of states exists and is continuous, we prove that the finite-dimensional distributions of $N^{\omega }$ converge to those of the Poisson point process. As an example we consider random perturbations of the Vladimirov operator acting on $L^{2}(X,m)$, where $X=\mathbb{Q}_{p}$ is the ring of $p$-adic numbers and $m$ is the Haar measure.
Keywords: ultrametric measure space, field of $p$-adic numbers, hierarchical Laplacian, fractional derivative, Vladimirov Laplacian, point spectrum, integrated density of states, Erdős problem, point process
Mots-clés : Bernoulli convolutions, Poisson convergence.
@article{IM2_2015_79_5_a0,
     author = {A. D. Bendikov and A. A. Grigor'yan and S. A. Molchanov and G. P. Samorodnitsky},
     title = {On a class of random perturbations of the hierarchical {Laplacian}},
     journal = {Izvestiya. Mathematics },
     pages = {859--893},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/}
}
TY  - JOUR
AU  - A. D. Bendikov
AU  - A. A. Grigor'yan
AU  - S. A. Molchanov
AU  - G. P. Samorodnitsky
TI  - On a class of random perturbations of the hierarchical Laplacian
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 859
EP  - 893
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/
LA  - en
ID  - IM2_2015_79_5_a0
ER  - 
%0 Journal Article
%A A. D. Bendikov
%A A. A. Grigor'yan
%A S. A. Molchanov
%A G. P. Samorodnitsky
%T On a class of random perturbations of the hierarchical Laplacian
%J Izvestiya. Mathematics 
%D 2015
%P 859-893
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/
%G en
%F IM2_2015_79_5_a0
A. D. Bendikov; A. A. Grigor'yan; S. A. Molchanov; G. P. Samorodnitsky. On a class of random perturbations of the hierarchical Laplacian. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 859-893. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/