Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_5_a0, author = {A. D. Bendikov and A. A. Grigor'yan and S. A. Molchanov and G. P. Samorodnitsky}, title = {On a class of random perturbations of the hierarchical {Laplacian}}, journal = {Izvestiya. Mathematics }, pages = {859--893}, publisher = {mathdoc}, volume = {79}, number = {5}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/} }
TY - JOUR AU - A. D. Bendikov AU - A. A. Grigor'yan AU - S. A. Molchanov AU - G. P. Samorodnitsky TI - On a class of random perturbations of the hierarchical Laplacian JO - Izvestiya. Mathematics PY - 2015 SP - 859 EP - 893 VL - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/ LA - en ID - IM2_2015_79_5_a0 ER -
%0 Journal Article %A A. D. Bendikov %A A. A. Grigor'yan %A S. A. Molchanov %A G. P. Samorodnitsky %T On a class of random perturbations of the hierarchical Laplacian %J Izvestiya. Mathematics %D 2015 %P 859-893 %V 79 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/ %G en %F IM2_2015_79_5_a0
A. D. Bendikov; A. A. Grigor'yan; S. A. Molchanov; G. P. Samorodnitsky. On a class of random perturbations of the hierarchical Laplacian. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 859-893. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/
[1] F. J. Dyson, “The dynamics of a disordered linear chain”, Phys. Rev. (2), 92:6 (1953), 1331–1338 | DOI | MR | Zbl
[2] F. J. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet”, Comm. Math. Phys., 12:2 (1969), 91–107 | DOI | MR | Zbl
[3] A. Bovier, “The density of states in the Anderson model at weak disorder: a renormalization group analysis of the hierarchical model”, J. Statist. Phys., 59:3-4 (1990), 745–779 | DOI | MR | Zbl
[4] E. Kritchevski, “Hierarchical Anderson model”, Probability and mathematical physics, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007, 309–322 | MR | Zbl
[5] E. Kritchevski, “Spectral localization in the hierarchical Anderson model”, Proc. Amer. Math. Soc., 135:5 (2007), 1431–1440 | DOI | MR | Zbl
[6] E. Kritchevski, “Poisson statistics of eigenvalues in the hierarchical Anderson model”, Ann. Henri Poincaré, 9:4 (2008), 685–709 | DOI | MR | Zbl
[7] S. Molchanov, “Hierarchical random matrices and operators. Application to Anderson model”, Multidimensional statistical analysis and theory of random matrices (Bowling Green, OH, 1996), VSP, Utrecht, 1996, 179–194 | MR | Zbl
[8] S. Albeverio, W. Karwowski, “A random walk on $p$-adics – the generator and its spectrum”, Stochastic Process. Appl., 53:1 (1994), 1–22 | DOI | MR | Zbl
[9] J. Pearson, J. Bellissard, “Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets”, J. Noncommut. Geom., 3:3 (2009), 447–480 | DOI | MR | Zbl
[10] M. Aizenman, S. A. Molchanov, “Localization at large disorder and at extreme energies: an elementary derivation”, Comm. Math. Phys., 157:2 (1993), 245–278 | DOI | MR | Zbl
[11] N. Minami, “Local fluctuation of the spectrum of a multidimensional Anderson tight binding model”, Comm. Math. Phys., 177:3 (1996), 709–725 | DOI | MR | Zbl
[12] A. Bendikov, A. Grigor'yan, C. Pittet, “On a class of Markov semigroups on discrete ultra-metric spaces”, Potential Anal., 37:2 (2012), 125–169 | DOI | MR | Zbl
[13] A. Bendikov, A. Grigoryan, C. Pittet, W. Woess, “Isotropic Markov semigroups on ultra-metric spaces”, Russian Math. Surveys, 69:4 (2014), 589–680 | DOI | DOI | Zbl
[14] J. Kigami, “Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees”, Adv. Math., 225:5 (2010), 2674–2730 | DOI | MR | Zbl
[15] A. Bendikov, P. Krupski, “On the spectrum of the hierarchical Laplacian”, Potential Anal., 41:4 (2014), 1247–1266 | DOI | MR | Zbl
[16] V. S. Vladimirov, “Generalized functions over the field of $p$-adic numbers”, Russian Math. Surveys, 43:5 (1988), 19–64 | DOI | MR | Zbl
[17] V. S. Vladimirov, I. V. Volovich, “$p$-adic Schrödinger-type equation”, Lett. Math. Phys., 18:1 (1989), 43–53 | DOI | MR | Zbl
[18] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Sci. Publ., River Edge, NJ, 1994, xx+319 pp. | MR | MR | Zbl | Zbl
[19] E. Lukacs, Characteristic functions, 2nd ed., Hafner Publishing Co., New York, 1970, x+350 pp. | MR | MR | Zbl | Zbl
[20] C. C. Graham, O. C. McGehee, Essays in commutative harmonic analysis, Grundlehren Math. Wiss., 238, Springer-Verlag, New York–Berlin, 1979, xxi+464 pp. | MR | Zbl
[21] B. Solomyak, “Notes on Bernoulli convolutions”, Fractal geometry and applications: a jubilee of B. Mandelbrot, Proc. Sympos. Pure Math., 72, Part 1, Amer. Math. Soc., Providence, RI, 2004, 207–230 | MR | Zbl
[22] Y. Peres, B. Solomyak, “Absolute continuity of Bernoulli convolutions, a simple proof”, Math. Res. Lett., 3:2 (1996), 231–239 | DOI | MR | Zbl
[23] Y. Peres, W. Schlag, B. Solomyak, “Sixty years of Bernoulli convolutions”, Fractal geometry and stochastics (Greifswald/Koserow, 1998), v. II, Progr. Probab., 46, Birkhäuser, Basel, 2000, 39–65 | MR | Zbl
[24] M. Del Muto, A. Figà-Talamanca, “Diffusion on locally compact ultrametric spaces”, Expo. Math., 22:3 (2004), 197–211 | DOI | MR | Zbl
[25] M. Del Muto, A. Figà-Talamanca, “Anisotropic diffusion on totally disconnected abelian groups”, Pacific J. Math., 225:2 (2006), 221–229 | DOI | MR | Zbl
[26] P. Cartier, “Fonctions harmoniques sur un arbre”, Convegno di Calcolo delle Probabilità, INDAM (Rome, 1971), Sympos. Math., IX, Academic Press, London, 1972, 203–270 | MR | Zbl
[27] W. Woess, Denumerable Markov chains. Generating functions, boundary theory, random walks on trees, EMS Textbk. Math., Eur. Math. Soc., Zürich, 2009, xviii+351 pp. | DOI | MR | Zbl
[28] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1975, xii+294 pp. | MR | Zbl
[29] A. N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedian fields, Monogr. Textbooks Pure Appl. Math., 244, Marcel Dekker, Inc., New York, 2001, xii+316 pp. | DOI | MR | Zbl
[30] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters–Noordhoff Publishing Co., Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl
[31] B. Solomyak, “On the random series $\sum \pm \lambda ^{n}$ (an Erdös problem)”, Ann. of Math. (2), 142:3 (1995), 611–625 | DOI | MR | Zbl
[32] M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, Springer Ser. Statist., Springer-Verlag, New York–Berlin, 1983, xii+336 pp. | MR | Zbl
[33] S. Chatterjee, P. Diaconis, E. Meckes, “Exchangeable pairs and Poisson approximation”, Probab. Surv., 2 (2005), 64–106 | DOI | MR | Zbl
[34] R. Arratia, L. Goldstein, L. Gordon, “Two moments suffice for Poisson approximations: the Chen–Stein method”, Ann. Probab., 17:1 (1989), 9–25 | DOI | MR | Zbl