On a class of random perturbations of the hierarchical Laplacian
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 859-893
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(X,d)$ be a locally compact separable ultrametric space. Given
a measure $m$ on $X$ and a function $C(B)$ defined on the set $B$ of all
balls of positive measure of $X$, we consider the hierarchical Laplacian
$L=L_{C}$. The operator $L$ acts on $L^{2}(X,m)$. It is essentially
self-adjoint and has a pure point spectrum. By choosing a family
$\{\varepsilon (B)\}$ of independent identically distributed random
variables, we define the perturbed function $C(B,\omega)$ and the
perturbed hierarchical Laplacian $L^{\omega }=L_{C(\omega)}$. We study
the arithmetic means $\bar{\lambda }(\omega)$ of the eigenvalues
of $L^{\omega }$. Under some mild assumptions the normalized
arithmetic means $( \bar{\lambda }-\mathbb{E}\bar{\lambda })/\sigma
[\bar{\lambda }]$ converge to $N(0,1)$ in distribution.
We also give examples
when the normal convergence fails. We prove the existence of an
integrated density of states. Introducing an empirical point process
$N^{\omega }$ for the eigenvalues of $L^{\omega }$ and assuming that
the density of states exists and is continuous, we prove that
the finite-dimensional distributions of $N^{\omega }$ converge to those
of the Poisson point process. As an example we consider random
perturbations of the Vladimirov operator acting on $L^{2}(X,m)$,
where $X=\mathbb{Q}_{p}$ is the ring of $p$-adic numbers and
$m$ is the Haar measure.
Keywords:
ultrametric measure space, field of $p$-adic numbers, hierarchical
Laplacian, fractional derivative, Vladimirov Laplacian, point spectrum,
integrated density of states, Erdős problem,
point process
Mots-clés : Bernoulli convolutions, Poisson convergence.
Mots-clés : Bernoulli convolutions, Poisson convergence.
@article{IM2_2015_79_5_a0,
author = {A. D. Bendikov and A. A. Grigor'yan and S. A. Molchanov and G. P. Samorodnitsky},
title = {On a class of random perturbations of the hierarchical {Laplacian}},
journal = {Izvestiya. Mathematics },
pages = {859--893},
publisher = {mathdoc},
volume = {79},
number = {5},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/}
}
TY - JOUR AU - A. D. Bendikov AU - A. A. Grigor'yan AU - S. A. Molchanov AU - G. P. Samorodnitsky TI - On a class of random perturbations of the hierarchical Laplacian JO - Izvestiya. Mathematics PY - 2015 SP - 859 EP - 893 VL - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/ LA - en ID - IM2_2015_79_5_a0 ER -
%0 Journal Article %A A. D. Bendikov %A A. A. Grigor'yan %A S. A. Molchanov %A G. P. Samorodnitsky %T On a class of random perturbations of the hierarchical Laplacian %J Izvestiya. Mathematics %D 2015 %P 859-893 %V 79 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/ %G en %F IM2_2015_79_5_a0
A. D. Bendikov; A. A. Grigor'yan; S. A. Molchanov; G. P. Samorodnitsky. On a class of random perturbations of the hierarchical Laplacian. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 859-893. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a0/