Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_4_a1, author = {G. E. Ivanov}, title = {Sharp estimates for the moduli of continuity of metric projections onto weakly convex sets}, journal = {Izvestiya. Mathematics }, pages = {668--697}, publisher = {mathdoc}, volume = {79}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a1/} }
G. E. Ivanov. Sharp estimates for the moduli of continuity of metric projections onto weakly convex sets. Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 668-697. http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a1/
[1] Ya. I. Alber, Jen-Chih Yao, “On the projection dynamical systems in Banach spaces”, Taiwanese J. Math., 11:3 (2007), 819–847 | MR | Zbl
[2] B. O. Björnest.{a}l, Continuity of the metric projection operator, preprint, Dept. of Math, TRITA-MAT, 20, Royal Institute of Technology, Stockholm, 1974, 348 pp.
[3] B. O. Björnest.{a}l, “Local Lipschitz continuity of the metric projection operator”, Approximation theory, Papers, VIth semester, Stefan Banach Internat. Math. Center, Warsaw, 1975, Banach Center Publ., 4, PWN, Warsaw, 1979, 43–53 | MR | Zbl
[4] V. I. Berdyshev, “On the modulus of continuity of an operator of best approximation”, Math. Notes, 15:5 (1974), 478–484 | DOI | MR | Zbl
[5] V. I. Berdyshev, “Variation of the norms in the problem of best approximation”, Math. Notes, 29:2 (1981), 95–103 | DOI | MR | Zbl
[6] V. I. Berdyshev, Ustoichivost minimizatsii funktsionalov i ravnomernaya nepreryvnost metricheskoi proektsii, Diss....dokt. fiz.-matem. nauk, Matem. in-t im. V. A. Steklova AN SSSR, M., 1988
[7] Ya. I. Alber, A. I. Notik, “On some estimates for projection operators in Banach space”, Comm. Appl. Nonlinear Anal., 2:1 (1995), 47–55 | MR | Zbl
[8] Ya. I. Alber, “A bound for the modulus of continuity for metric projections in a uniformly convex and uniformly smooth Banach space”, J. Approx. Theory, 85:3 (1996), 237–249 | DOI | MR | Zbl
[9] J.-P. Penot, “Continuity properties of projection operators”, J. Inequal. Appl., 2005:5 (2005), 509–521 | DOI | MR | Zbl
[10] H. Federer, “Curvature measures”, Trans. Amer. Math. Soc., 93:3 (1959), 418–491 | DOI | MR | Zbl
[11] J.-P. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl
[12] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and lower-$C^{2}$ property”, J. Convex Anal., 2:1-2 (1995), 117–144 | MR | Zbl
[13] F. Bernard, L. Thibault, N. Zlateva, “Characterizations of prox-regular sets in uniformly convex Banach spaces”, J. Convex Anal., 13:3-4 (2006), 525–559 | MR | Zbl
[14] F. Bernard, L. Thibault, N. Zlateva, “Prox-regular sets and epigraphs in uniformly convex Banach spaces: Various regularities and other properties”, Trans. Amer. Math. Soc., 363:4 (2011), 2211–2247 | DOI | MR | Zbl
[15] M. V. Balashov, G. E. Ivanov, “Weakly convex and proximally smooth sets in Banach spaces”, Izv. Math., 73:3 (2009), 455–499 | DOI | DOI | MR | Zbl
[16] V. V. Goncharov, F. F. Pereira, “Neighbourhood retractions of nonconvex sets in a Hilbert space via sublinear functionals”, J. Convex Anal., 18:1 (2011), 1–36 | MR | Zbl
[17] V. V. Goncharov, F. F. Pereira, “Geometric conditions for regularity in a time-minimum problem with constant dynamics”, J. Convex Anal., 19:3 (2012), 631–669 | MR | Zbl
[18] G. Colombo, V. V. Goncharov, B. S. Mordukhovich, “Well-posedness of minimal time problems with constant dynamics in banach spaces”, Set-Valued Var. Anal., 18:3-4 (2010), 349–372 | DOI | MR | Zbl
[19] G. E. Ivanov, M. S. Lopushanski, “O korrektnosti zadach approksimatsii i optimizatsii dlya slabo vypuklykh mnozhestv i funktsii”, Fundament. i prikl. matem., 18:5 (2013), 89–118
[20] G. E. Ivanov, “Weak convexity of sets and functions in a Banach space”, J. Convex Anal., 22:2 (2015), 365–398
[21] T. Abatzoglou, “Continuity of metric projections in uniformly convex and uniformly smooth Banach spaces”, J. Approx. Theory, 39:4 (1983), 299–307 | DOI | MR | Zbl
[22] G. Nordlander, “The modulus of convexity in normed linear spaces”, Ark. Mat., 4:1 (1960), 15–17 | DOI | MR | Zbl
[23] G. E. Ivanov, “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR | Zbl
[24] B. T. Poljak, “Existence theorems and convergence of minimizing sequences in extremum problems with restrictions”, Soviet Math. Dokl., 7 (1966), 72–75 | MR | Zbl
[25] M. V. Balashov, D. Repovš, “Uniform convexity and the splitting problem for selections”, J. Math. Anal. Appl., 360:1 (2009), 307–316 | DOI | MR | Zbl
[26] O. Hanner, “On the uniform convexity of $L^{p}$ and $l^{p}$”, Ark. Mat., 3:3 (1956), 239–244 | DOI | MR | Zbl
[27] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergeb. Math. Grenzgeb., II, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl