On the Brauer group of an arithmetic model of a~hyperk\"ahler variety over a~number field
Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 623-644

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove Artin's conjecture on the finiteness of the Brauer group for an arithmetic model of a hyperkähler variety $V$ over a number field $k\hookrightarrow\mathbb C$ provided that $b_2(V\otimes_k\mathbb C)>3$. We show that the Brauer group of an arithmetic model of a simply connected Calabi–Yau variety over a number field is finite. We also prove that if the $l$-adic Tate conjecture on divisors holds for a certain smooth projective variety $V$ over a field $k$ of arbitrary characteristic $\operatorname{char}(k)\ne l$, then the group $\operatorname{Br}'(V\otimes_k k^{\mathrm{s}})^{\operatorname{Gal}(k^{\mathrm{s}}/k)}(l)$ is finite independently of the semisimplicity of the continuous $l$-adic representation of the Galois group $\operatorname{Gal}(k^{\mathrm{s}}/k)$ on the space $H^2_{\text{\'et}}(V\otimes_kk^{\mathrm{s}},\mathbb Q_l(1))$.
Keywords: hyperkähler variety, Calabi–Yau variety, arithmetic model, Brauer group, Artin's conjecture, K3-surface, Abelian surface, Hilbert scheme of points, generalized Kummer variety, Hilbert modular surface.
@article{IM2_2015_79_3_a6,
     author = {S. G. Tankeev},
     title = {On the {Brauer} group of an arithmetic model of a~hyperk\"ahler variety over a~number field},
     journal = {Izvestiya. Mathematics },
     pages = {623--644},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Brauer group of an arithmetic model of a~hyperk\"ahler variety over a~number field
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 623
EP  - 644
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a6/
LA  - en
ID  - IM2_2015_79_3_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Brauer group of an arithmetic model of a~hyperk\"ahler variety over a~number field
%J Izvestiya. Mathematics 
%D 2015
%P 623-644
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a6/
%G en
%F IM2_2015_79_3_a6
S. G. Tankeev. On the Brauer group of an arithmetic model of a~hyperk\"ahler variety over a~number field. Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 623-644. http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a6/