On the Brauer group of an arithmetic model of a~hyperk\"ahler variety over a~number field
Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 623-644.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove Artin's conjecture on the finiteness of the Brauer group for an arithmetic model of a hyperkähler variety $V$ over a number field $k\hookrightarrow\mathbb C$ provided that $b_2(V\otimes_k\mathbb C)>3$. We show that the Brauer group of an arithmetic model of a simply connected Calabi–Yau variety over a number field is finite. We also prove that if the $l$-adic Tate conjecture on divisors holds for a certain smooth projective variety $V$ over a field $k$ of arbitrary characteristic $\operatorname{char}(k)\ne l$, then the group $\operatorname{Br}'(V\otimes_k k^{\mathrm{s}})^{\operatorname{Gal}(k^{\mathrm{s}}/k)}(l)$ is finite independently of the semisimplicity of the continuous $l$-adic representation of the Galois group $\operatorname{Gal}(k^{\mathrm{s}}/k)$ on the space $H^2_{\text{\'et}}(V\otimes_kk^{\mathrm{s}},\mathbb Q_l(1))$.
Keywords: hyperkähler variety, Calabi–Yau variety, arithmetic model, Brauer group, Artin's conjecture, K3-surface, Abelian surface, Hilbert scheme of points, generalized Kummer variety, Hilbert modular surface.
@article{IM2_2015_79_3_a6,
     author = {S. G. Tankeev},
     title = {On the {Brauer} group of an arithmetic model of a~hyperk\"ahler variety over a~number field},
     journal = {Izvestiya. Mathematics },
     pages = {623--644},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Brauer group of an arithmetic model of a~hyperk\"ahler variety over a~number field
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 623
EP  - 644
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a6/
LA  - en
ID  - IM2_2015_79_3_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Brauer group of an arithmetic model of a~hyperk\"ahler variety over a~number field
%J Izvestiya. Mathematics 
%D 2015
%P 623-644
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a6/
%G en
%F IM2_2015_79_3_a6
S. G. Tankeev. On the Brauer group of an arithmetic model of a~hyperk\"ahler variety over a~number field. Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 623-644. http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a6/

[1] J. S. Milne, Etale cohomology, Princeton Univ. Press, Princeton, 1980, xiii+323 pp. | MR | MR

[2] A. Beauville, “Holomorphic symplectic geometry: a problem list”, Complex and differential geometry (Hannover, 2009), Springer Proc. Math., 8, Springer-Verlag, Heidelberg, 2011, 49–64 | DOI | MR

[3] A. N. Skorobogatov, Yu. G. Zarhin, “A finiteness theorem for the Brauer group of Abelian varieties and K3 surfaces”, J. Algebraic Geom., 17:3 (2008), 481–502 | DOI | MR | Zbl

[4] Y. André, “On the Shafarevich and Tate conjectures for hyperkähler varieties”, Math. Ann., 305 (1996), 205–248 | DOI | MR | Zbl

[5] S. G. Tankeev, “On the finiteness of the Brauer group of an arithmetic scheme”, Math. Notes, 95:1 (2014), 121–132 | DOI | MR

[6] A. Beauville, “Variétés kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom., 18 (1983), 755–782 | MR | Zbl

[7] K. O'Grady, “Desingularized moduli spaces of sheaves on a K3”, J. Reine Angew. Math., 512 (1999), 49–117 | MR | Zbl

[8] A. Rapagnetta, “On the Beauville form of the known irreducible symplectic varieties”, Math. Ann., 340:1 (2008), 77–95 | DOI | MR

[9] K. O'Grady, “A new six-dimensional irreducible symplectic variety”, J. Algebraic Geom., 12:3 (2003), 435–505 | DOI | MR | Zbl

[10] B. B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”, Appendix in: J. D. Lewis, A survey of the Hodge conjecture, CRM Monograph Series, 10, Second edition, Amer. Math. Soc., Providence, RI, 1999, 297–356 | MR

[11] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl

[12] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989, 496 pp. | MR

[13] P. Deligne, J. Milne, “Tannakian categories”, Hodge cycles, motives and Shimura varieties, Lecture Notes in Math., 900, Springer-Verlag, New York, 1982, 101–228 | DOI | MR | Zbl

[14] J. P. Jouanolou, “Cohomologie de quelques schémas classiques et théorie cohomologique des classes de Chern”, Exposé VII. SGA 5, Cohomologie $l$-adique et fonctions $L$, Lecture Notes in Math., 589, Springer-Verlag, Heidelberg, 1977, 282–350 | Zbl

[15] P. Deligne, “La conjecture de Weil pour les surfaces K3”, Invent. Math., 15 (1972), 206–226 | DOI | MR | Zbl

[16] A. N. Skorobogatov, Yu. G. Zarhin, A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic, arXiv: 1403.0849v1

[17] N. Burbaki, Algebra: moduli, koltsa, formy, Nauka, M., 1966, 555 pp. ; N. Bourbaki, Algèbre, Livre II, Hermann, Paris, 1959 | MR

[18] A. N. Skorobogatov, Yu. G. Zarhin, “The Brauer group and the Brauer–Manin set of products of varieties”, J. Eur. Math. Soc., 16 (2014), 749–768 | DOI | MR

[19] F. Catanese, “The moduli and global period mapping of surfaces with $K^2=p_g=1$: a counterexemple to the global Torelli problem”, Compositio Math., 41 (1980), 401–414 | MR | Zbl

[20] A. Todorov, “Surfaces of general type with $p_g=1$ and $(K,K)=1$”, Ann. Sci. École Norm. Sup. (4), 13:1 (1980), 1–21 | MR | Zbl

[21] A. Beauville, R. Donagi, “La variété des droites d'une hypersurface cubique de dimension 4”, C. R. Acad. Sci. Paris Sér. I Math., 301:14 (1985), 703–706 | MR | Zbl

[22] J.-L. Colliot-Thélène, A. N. Skorobogatov, “Good reduction of the Brauer–Manin obstruction”, Trans. Amer. Math. Soc., 365 (2013), 579–590 | DOI | MR | Zbl

[23] D. Mumford, Lectures on curves on an algebraic surface, Princeton Univ. Press, Princeton, N. J., 1966, xi+200 pp. | MR

[24] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386 | MR | Zbl

[25] Y. André, “Une introduction aux motifs (motifs purs, motifs mixtes, périodes)”, Panoramas et Synthèses, 17, Société Mathématique de France, Paris, 2004 | MR | Zbl

[26] J. W. S. Cassels, A. Fröhlich (editors), Algebraic number theory, Proc. Internat. Conf., Brighton; Academic Press, London; Thompson, Washington, DC, 1967, xviii+366 pp. | MR | MR

[27] S. G. Tankeev, “O gruppe Brauera arifmeticheskoi skhemy”, Izv. RAN. Ser. matem., 65:2 (2001), 155–186 | DOI | MR | Zbl

[28] A. Weil, Basic number theory, Springer-Verlag, Berlin–Heidelberg–New York, 1967, xviii+294 pp. | MR | MR

[29] J.-P. Serre, Cours d'arithmétique, Presses Universitaires de France, Paris, 1970, 188 pp. | MR | MR

[30] G. Faltings, “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73:3 (1983), 349–366 | DOI | MR | Zbl

[31] Dzh. Teit, “Endomorfizmy abelevykh mnogoobrazii nad konechnymi polyami”, Matematika. Sb. per., 12:6 (1968), 31–40; J. Tate, “Endomorphisms of abelian varieties over finite fields”, Invent. Math., 2:2 (1966), 134–144 | DOI | MR | Zbl

[32] J.-L. Colliot-Thélène, A. N. Skorobogatov, “Descente galoisienne sur le groupe de Brauer”, J. Reine Angew. Math., 682 (2013), 141–165 | MR | Zbl

[33] A. Grothendieck, “Le groupe de Brauer. I, II, III”, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam; Masson, Paris, 1968, 46–188 | MR

[34] T. Shioda, T. Katsura, “On Fermat varieties”, Tohoku Math. J., 31 (1979), 97–115 | DOI | MR | Zbl

[35] O. V. Shvartsman, “Simple-connectivity of a factor-space of the modular Hilbert group”, Funct. Anal. Appl., 8:2 (1974), 188–189 | DOI | MR | Zbl

[36] V. K. Murty, D. Ramakrishnan, “Period relations and the Tate conjecture for Hilbert modular surfaces”, Invent. Math., 89 (1987), 319–345 | DOI | MR | Zbl

[37] C. Klingenberg, “Die Tate Vermutungen für Hilbert–Blumenthal Flächen”, Invent. Math., 89 (1987), 291–318 | DOI | MR

[38] G. Harder, R. P. Langlands, M. Rapoport, “Algebraische Zyklen auf Hilbert–Blumenthal-Flächen”, J. Reine Angew. Math., 366 (1986), 53–120 | MR | Zbl

[39] T. Oda, “Periods of Hilbert modular surfaces”, Progress in Math., 19, Birkhäuser, Boston, MA, 1982, xvi+123 pp. | MR

[40] F. Hirzebruch, G. van der Geer, “Lectures on Hilbert modular surfaces”, Sem. Math. Sup., 77, Presses de l'Université de Montréal, Montréal, QC, 1981, 193 pp. | MR

[41] F. Hirzebruch, A. Van de Ven, “Hilbert modular surfaces and the classification of algebraic surfaces”, Invent. Math., 23 (1974), 1–29 | DOI | MR | Zbl

[42] F. Hirzebruch, D. Zagier, “Classification of Hilbert modular surfaces”, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, 43–77 | MR | Zbl