On the topology of stable Lagrangian maps with singularities of types $A$ and $D$
Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 581-622

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the topology of adjacencies of multisingularities in the image of a stable Lagrangian map with singularities of types $A_\mu^\pm$ and $D_\mu^\pm$. In particular, we prove that each connected component of the manifold of multisingularities of any fixed type $A_{\mu_1}^{\pm}\dotsb A_{\mu_p}^{\pm}$ for a germ of the image of a Lagrangian map with a monosingularity of type $D_\mu^\pm$ is either contractible or homotopy equivalent to a circle. We calculate the number of connected components of each kind for all types of multisingularities. As a corollary, we obtain new conditions for the coexistence of Lagrangian singularities.
Keywords: stable Lagrangian maps, multisingularities, adjacency index, Euler characteristic.
@article{IM2_2015_79_3_a5,
     author = {V. D. Sedykh},
     title = {On the topology of stable {Lagrangian} maps with singularities of types $A$ and $D$},
     journal = {Izvestiya. Mathematics },
     pages = {581--622},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a5/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - On the topology of stable Lagrangian maps with singularities of types $A$ and $D$
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 581
EP  - 622
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a5/
LA  - en
ID  - IM2_2015_79_3_a5
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T On the topology of stable Lagrangian maps with singularities of types $A$ and $D$
%J Izvestiya. Mathematics 
%D 2015
%P 581-622
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a5/
%G en
%F IM2_2015_79_3_a5
V. D. Sedykh. On the topology of stable Lagrangian maps with singularities of types $A$ and $D$. Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 581-622. http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a5/