On the topology of stable Lagrangian maps with singularities of types $A$ and $D$
Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 581-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the topology of adjacencies of multisingularities in the image of a stable Lagrangian map with singularities of types $A_\mu^\pm$ and $D_\mu^\pm$. In particular, we prove that each connected component of the manifold of multisingularities of any fixed type $A_{\mu_1}^{\pm}\dotsb A_{\mu_p}^{\pm}$ for a germ of the image of a Lagrangian map with a monosingularity of type $D_\mu^\pm$ is either contractible or homotopy equivalent to a circle. We calculate the number of connected components of each kind for all types of multisingularities. As a corollary, we obtain new conditions for the coexistence of Lagrangian singularities.
Keywords: stable Lagrangian maps, multisingularities, adjacency index, Euler characteristic.
@article{IM2_2015_79_3_a5,
     author = {V. D. Sedykh},
     title = {On the topology of stable {Lagrangian} maps with singularities of types $A$ and $D$},
     journal = {Izvestiya. Mathematics },
     pages = {581--622},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a5/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - On the topology of stable Lagrangian maps with singularities of types $A$ and $D$
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 581
EP  - 622
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a5/
LA  - en
ID  - IM2_2015_79_3_a5
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T On the topology of stable Lagrangian maps with singularities of types $A$ and $D$
%J Izvestiya. Mathematics 
%D 2015
%P 581-622
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a5/
%G en
%F IM2_2015_79_3_a5
V. D. Sedykh. On the topology of stable Lagrangian maps with singularities of types $A$ and $D$. Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 581-622. http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a5/

[1] V. A. Vasilev, Lagranzhevy i lezhandrovy kharakteristicheskie klassy, MTsNMO, M., 2000, 312 pp.

[2] Yu. S. Chislenko, “Decompositions of simple singularities of real functions”, Funct. Anal. Appl., 22:4 (1988), 297–310 | DOI | MR | Zbl

[3] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin–Heidelberg; PHASIS, Moscow, 2004, xvi+639 pp. | MR | MR | Zbl | Zbl

[4] V. D. Sedykh, “The topology of adjacencies of type $A$ and $D$ Lagrangian singularities”, Funct. Anal. Appl., 48:4 (2014), 304–308 | DOI | DOI

[5] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985, xi+382 pp. | DOI | MR | MR | Zbl | Zbl

[6] V. I. Arnol'd, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Academic Publishers Group, Dordrecht, 1990, xiv+259 pp. | DOI | MR | MR | Zbl | Zbl

[7] C. McCrory, A. Parusiński, “Algebraically constructible functions”, Ann. Sci. École Norm. Sup. (4), 30:4 (1997), 527–552 | DOI | MR | Zbl

[8] V. D. Sedykh, “On the topology of wave fronts in spaces of low dimension”, Izv. Math., 76:2 (2012), 375–418 | DOI | DOI | MR | Zbl

[9] V. D. Sedykh, “Adjacency indices for singularities of wave fronts in low dimensional spaces”, Funct. Anal. Appl., 44:3 (2010), 234–236 | DOI | DOI | MR | Zbl

[10] V. D. Sedykh, “On the topology of cooriented wave fronts in spaces of small dimensions”, Mosc. Math. J., 11:3 (2011), 583–598 | MR | Zbl

[11] V. D. Sedykh, “On the coexistence of corank 1 multisingularities of a stable smooth mapping of equidimensional manifolds”, Proc. Steklov Inst. Math., 258 (2007), 194–217 | DOI | MR | Zbl

[12] V. D. Sedykh, “A complete system of linear relations between the Euler characteristics of manifolds of corank $1$ singularities of a generic front”, Funct. Anal. Appl., 38:4 (2004), 298–301 | DOI | DOI | MR | Zbl

[13] V. D. Sedykh, “Corank 1 singularities of stable smooth maps and special tangent hyperplanes to a space curve”, Math. Notes, 78:3 (2005), 378–390 | DOI | DOI | MR | Zbl