Eigenvibrations of thick cascade junctions with `very heavy' concentrated masses
Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 467-511.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study small-parameter asymptotics of eigenelements of a boundary-value problem for the Laplace operator in a thick cascade junction with concentrated masses. There are five qualitatively different cases in the asymptotic behaviour of eigenvalues and eigenfunctions as the small parameter tends to zero (‘light’, ‘intermediate’, ‘slightly heavy’, ‘intermediate heavy’ and ‘very heavy’ concentrated masses). We study the influence of concentrated masses on the asymptotics of eigenvibrations in the last two cases. We construct the leading terms of asymptotic expansions for eigenfunctions and eigenvalues and rigorously justify them by appropriate asymptotic estimates. We also find new types of high-frequency eigenvibrations.
Keywords: thick cascade junction, concentrated masses, homogenization, matching of asymptotic expansions, eigenfunctions, eigenvalues, problems with a small parameter.
@article{IM2_2015_79_3_a2,
     author = {T. A. Mel'nik and G. A. Chechkin},
     title = {Eigenvibrations of thick cascade junctions with `very heavy' concentrated masses},
     journal = {Izvestiya. Mathematics },
     pages = {467--511},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a2/}
}
TY  - JOUR
AU  - T. A. Mel'nik
AU  - G. A. Chechkin
TI  - Eigenvibrations of thick cascade junctions with `very heavy' concentrated masses
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 467
EP  - 511
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a2/
LA  - en
ID  - IM2_2015_79_3_a2
ER  - 
%0 Journal Article
%A T. A. Mel'nik
%A G. A. Chechkin
%T Eigenvibrations of thick cascade junctions with `very heavy' concentrated masses
%J Izvestiya. Mathematics 
%D 2015
%P 467-511
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a2/
%G en
%F IM2_2015_79_3_a2
T. A. Mel'nik; G. A. Chechkin. Eigenvibrations of thick cascade junctions with `very heavy' concentrated masses. Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 467-511. http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a2/

[1] G. A. Chechkin, T. A. Mel'nyk, Asymptotic behavior of the eigenvalues and eigenfunctions to a spectral problem in a thick cascade junction with concentrated masses, Preprint 2011-12, Oberwolfach Preprints (OWP), MFO, Oberwolfach-Walke, Germany, 2011, 39 pp., ISSN 1864-7596

[2] G. A. Chechkin, T. A. Mel'nyk, “Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses”, Appl. Anal., 91:6 (2012), 1055–1095 | DOI | MR | Zbl

[3] G. A. Chechkin, T. A. Mel'nyk, Spatial-skin effect for a spectral problem with “slightly heavy” concentrated masses in a thick cascade junction, Preprint 2012-10, Oberwolfach Preprints (OWP), MFO, Oberwolfach-Walke, Germany, 2012, ISSN 1864-7596

[4] T. A. Mel'nik, G. A. Chechkin, “On new types of vibrations of thick cascade junctions with concentrated masses”, Dokl. Math., 87:1 (2013), 102–106 | DOI | DOI | MR | Zbl

[5] G. A. Chechkin, T. A. Mel'nyk, “Spatial-skin effect for eigenvibrations of a thick cascade junction with “heavy” concentrated masses”, Math. Methods Appl. Sci., 37:1 (2014), 56–74 | DOI | MR | Zbl

[6] G. A. Chechkin, T. A. Mel'nyk, “High frequency cell-vibrations and spatial skin-effect in thick cascade junction with heavy concentrated masses”, C. R. Mécanique, 342:4 (2014), 221–228 | DOI

[7] Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, “Asymptotics of the solution of a Dirichlet spectral problem in a junction with highly oscillating boundary”, C. R. Mécanique, 336:9 (2008), 693–698 | DOI | Zbl

[8] T. P. Chechkina, “Averaging in cascade junctions with a “wide” transmission domain”, J. Math. Sci. (N. Y.), 190:1 (2013), 157–169 | DOI | MR | Zbl

[9] E. Sánchez-Palencia, “Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses”, Trends and applications of pure mathematics to mechanics (Palaiseau, 1983), Lecture Notes in Phys., 195, Springer, Berlin, 1984, 346–368 | DOI | MR | Zbl

[10] M. E. Perez, G. A. Chechkin, E. I. Yablokova, “On eigenvibrations of a body with “light” concentrated masses on the surface”, Russian Math. Surveys, 57:6 (2002), 1240–1242 | DOI | DOI | MR | Zbl

[11] G. A. Chechkin, M. E. Pérez, E. I. Yablokova, “Non-periodic boundary homogenization and “light” concentrated masses”, Indiana Univ. Math. J., 54:2 (2005), 321–348 | DOI | MR | Zbl

[12] M. Lobo, E. Pérez, “A skin effect for systems with many concentrated masses”, C. R. Acad. Sci. Paris Sér. II b, 327:8 (1999), 771–776 | DOI | Zbl

[13] O. A. Oleĭnik, A. S. Shamaev, G. A. Yosifian, Mathematical problems in elasticity and homogenization, Stud. Math. Appl., 26, North-Holland Publishing Co., Amsterdam, 1992, xiv+398 pp. | MR | MR | Zbl | Zbl

[14] T. A. Mel'nik, S. A. Nazarov, “Asymptotic structure of the spectrum in a problem on harmonic vibrations of a hub with heavy spokes”, Russian Acad. Sci. Dokl. Math., 48:3 (1994), 428–432 | MR | Zbl

[15] M. Lobo, E. Perez, “On vibrations of a body with many concentrated masses near the boundary”, Math. Models Methods Appl. Sci., 3:2 (1993), 249–273 | DOI | MR | Zbl

[16] T. A. Mel'nyk, “Vibrations of a thick periodic junction with concentrated masses”, Math. Models Methods Appl. Sci., 11:6 (2001), 1001–1027 | DOI | MR | Zbl

[17] M. Lobo, E. Pérez, “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mécanique, 331:4 (2003), 303–317 | DOI | Zbl

[18] T. A. Mel'nyk, S. A. Nazarov, “Asymptotic structure of the spectrum of the Neumann problem in a thin comb-like domain”, C. R. Acad. Sci. Paris Sér. I Math., 319:12 (1994), 1343–1348 | MR | Zbl

[19] T. A. Mel'nik, S. A. Nazarov, “The asymptotics of the solution to the Neumann spectral problem in a domain of the “dense-comb” type”, J. Math. Sci. (N. Y.), 85:6 (1997), 2326–2346 | DOI | MR | Zbl

[20] T. A. Mel'nyk, “Asymptotic analysis of a spectral problem in a periodic thick junction of type 3:2:1”, Math. Methods Appl. Sci., 23:4 (2000), 321–346 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[21] T. A. Mel'nyk, “Asymptotic behavior of eigenvalues and eigenfunctions of the Steklov problem in a thick periodic junction”, Nonlinear Oscil., 4:1 (2001), 91–105 | MR | Zbl

[22] T. A. Mel'nyk, “Scheme of investigation of the spectrum of a family of perturbed operators and its application to spectral problems in thick junctions”, Nonlinear Oscil. (N. Y.), 6:2 (2003), 232–249 | DOI | MR | Zbl

[23] C. Leal, J. Sanchez-Hubert, “Perturbation of the eigenvalues of a membrane with a concentrated mass”, Quart. Appl. Math., 47:1 (1989), 93–103 | MR | Zbl

[24] O. A. Oleinik, J. Sanchez-Hubert, G. A. Yosifian, “On vibrations of a membrane with concentrated masses”, Bull. Sci. Math., 115:1 (1991), 1–27 | MR | Zbl

[25] M. Lobo, E. Pérez, “Vibrations of a membrane with many concentrated masses near the boundary”, Math. Models Methods Appl. Sci., 5:5 (1995), 565–585 | DOI | MR | Zbl

[26] S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Modél. Math. Anal. Numér., 27:6 (1993), 777–799 | MR | Zbl

[27] G. A. Chechkin, “On the vibration of a partially fastened membrane with many “light” concentrated masses on the boundary”, C. R. Mécanique, 332:12 (2004), 949–954 | DOI | Zbl

[28] G. A. Chechkin, “Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case”, Izv. Math., 69:4 (2005), 805–846 | DOI | DOI | MR | Zbl

[29] G. A. Chechkin, “Asymptotic expansion of eigenelements of the Laplace operator in a domain with a large number of “light” concentrated masses sparsely situated on the boundary. Two-dimensional case”, Trans. Moscow Math. Soc., 2009 (2009), 71–134 | DOI | MR | Zbl

[30] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for partial differential equations in non-smooth domains”, Russian Math. Surveys, 38:2 (1983), 1–66 | DOI | MR | Zbl

[31] E. M. Landis, G. P. Panasenko, “A variant of a Phragmén–Lindelöf theorem for elliptic equations with coefficients that are periodic functions of all variables except one”, Topics in modern mathematics, Petrovskii Semin., Contemp. Soviet Math., 5, Consultants Bureau [Plenum], New York, 1985, 133–172 | MR | MR | Zbl | Zbl

[32] E. M. Landis, G. P. Panasenko, “A theorem on the asymptotics of solutions of elliptic equations with coefficients periodic in all variables except one”, Soviet Math. Dokl., 18:4 (1977), 1140–1143 | MR | Zbl

[33] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[34] T. A. Mel'nyk, “Homogenization of the Poisson equation in a thick periodic junction”, Z. Anal. Anwendungen, 18:4 (1999), 953–975 | DOI | MR | Zbl

[35] A. M. Il'in, “A boundary value problem for the elliptic equation of second order in a domain with a narrow slit. 1. The two-dimensional case”, Math. USSR-Sb., 28:4 (1976), 459–480 | DOI | MR | Zbl

[36] A. M. Il'in, “A boundary value problem for the second order elliptic equation in a domain with a narrow slit. 2. Domain with a small cavity”, Math. USSR-Sb., 32:2 (1977), 227–244 | DOI | MR | Zbl

[37] A. M. Il'in, “Investigation of the asymptotic behavior of the solution of an elliptic boundary-value problem in a domain with a small hole”, J. Sov. Math., 33 (1986), 994–1014 | MR | Zbl | Zbl

[38] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl

[39] G. A. Chechkin, A. L. Piatnitski, A. S. Shamaev, Homogenization. Methods and Applications, Transl. Math. Monogr., 234, Amer. Math. Soc., Providence, RI, 2007, x+234 pp. | MR | Zbl

[40] T. A. Mel'nik, G. A. Chechkin, “Homogenization of a boundary value problem in a thick cascade junction”, J. Math. Sci. (N. Y.), 154:1 (2008), 50–77 | DOI | MR | Zbl

[41] M. I. Višik, L. A. Ljusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. (2), 20 (1962), 239–364 | MR | MR | Zbl | Zbl