A criterion for the best uniform approximation by simple partial fractions in terms of alternance
Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 431-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of best uniform approximation of real continuous functions $f$ by simple partial fractions of degree at most $n$ on a closed interval $S$ of the real axis. We get analogues of the classical polynomial theorems of Chebyshev and de la Vallée-Poussin. We prove that a real-valued simple partial fraction $R_n$ of degree $n$ whose poles lie outside the disc with diameter $S$, is a simple partial fraction of the best approximation to $f$ if and only if the difference $f-R_n$ admits a Chebyshev alternance of $n+1$ points on $S$. Then $R_n$ is the unique fraction of best approximation. We show that the restriction on the poles is unimprovable. Particular cases of the theorems obtained have been stated by various authors only as conjectures.
Keywords: simple partial fraction, approximation, uniqueness, the Haar condition.
Mots-clés : alternance
@article{IM2_2015_79_3_a0,
     author = {M. A. Komarov},
     title = {A criterion for the best uniform approximation by simple partial fractions in terms of alternance},
     journal = {Izvestiya. Mathematics },
     pages = {431--448},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a0/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - A criterion for the best uniform approximation by simple partial fractions in terms of alternance
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 431
EP  - 448
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a0/
LA  - en
ID  - IM2_2015_79_3_a0
ER  - 
%0 Journal Article
%A M. A. Komarov
%T A criterion for the best uniform approximation by simple partial fractions in terms of alternance
%J Izvestiya. Mathematics 
%D 2015
%P 431-448
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a0/
%G en
%F IM2_2015_79_3_a0
M. A. Komarov. A criterion for the best uniform approximation by simple partial fractions in terms of alternance. Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 431-448. http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a0/

[1] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl

[2] O. N. Kosukhin, “Approximation properties of the most simple fractions”, Moscow Univ. Math. Bull., 56:4 (2001), 36–40 | MR | Zbl

[3] P. A. Borodin, O. N. Kosukhin, “Approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl

[4] V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | DOI | MR | Zbl

[5] V. I. Danchenko, “Convergence of simple partial fractions in $L_p(\mathbb R)$”, Sb. Math., 201:7 (2010), 985–997 | DOI | DOI | MR | Zbl

[6] I. R. Kayumov, “Convergence of series of simple partial fractions in $L_p(\mathbb R)$”, Sb. Math., 202:10 (2011), 1493–1504 | DOI | DOI | MR | Zbl

[7] V. I. Danchenko, E. N. Kondakova, “Chebyshev's alternance in the approximation of constants by simple partial fractions”, Proc. Steklov Inst. Math., 270 (2010), 80–90 | DOI | MR | Zbl

[8] M. A. Komarov, “Examples related to best approximation by simple partial fractions”, J. Math. Sci. (N. Y.), 184:4 (2012), 509–523 | DOI | MR | Zbl

[9] M. A. Komarov, “An example of non-uniqueness of a simple partial fraction of the best uniform approximation”, Russian Math. (Iz. VUZ), 57:9 (2013), 22–30 | DOI | MR | Zbl

[10] N. I. Akhiezer, Lektsii po teorii approksimatsii, 2-e izd., Nauka, M., 1965, 407 pp. | MR | Zbl

[11] Ya. V. Novak, Aproksimatsiini ta interpolyatsiini vlastivosti naiprostishikh drobiv, Dis. $\dots$ kand. fiz.-matem. nauk, IM NAN Ukrainy, Kiev, 2009

[12] V. I. Danchenko, D. Ya. Danchenko, “O edinstvennosti naiprosteishei drobi nailuchshego priblizheniya”, Tez. dokladov Mezhdunarodnoi konferentsii po differentsialnym uravneniyam i dinamicheskim sistemam (Suzdal, 2010), MIAN, M., 2010, 71–72

[13] M. A. Komarov, “Uniqueness of a simple partial fraction of best approximation”, J. Math. Sci. (N. Y.), 175:3 (2011), 284–308 | DOI | MR | Zbl

[14] M. A. Komarov, “Sufficient condition for the best uniform approximation by simple partial fractions”, J. Math. Sci. (N. Y.), 189:3 (2013), 482–489 | DOI | MR | Zbl

[15] M. A. Komarov, “A criterion for the best approximation of constants by simple partial fractions”, Math. Notes, 93:2 (2013), 250–256 | DOI | DOI | MR | Zbl

[16] M. A. Komarov, “On the analog of Chebyshev theorem for simple partial fractions”, Kompleksnyi analiz i ego prilozheniya (Petrozavodsk, 2014), PetrGU, Petrozavodsk, 2014, 65–69

[17] M. A. Komarov, “Ob analoge usloviya Khaara dlya naiprosteishikh drobei”, Problemy matem. analiza, 80 (2015), 17–22

[18] H. Minc, Permanents, Encyclopedia Math. Appl., 6, Addison-Wesley Publishing Co., Reading, Mass., 1978, xviii+205 pp. | MR | MR | Zbl | Zbl

[19] D. Ya. Danchenko, Nekotorye voprosy approksimatsii i interpolyatsii ratsionalnymi funktsiyami. Prilozhenie k uravneniyam ellipticheskogo tipa, Dis. $\dots$ kand. fiz.-matem. nauk, VGPU, Vladimir, 2001

[20] M. G. Kreĭn, A. A. Nudel'man, The Markov moment problem and extremal problems., Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977, v+417 pp. | MR | MR | Zbl | Zbl

[21] E. N. Kondakova, “Interpolyatsiya naiprosteishimi drobyami”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:2 (2009), 30–37

[22] M. A. Komarov, “A criterion for the solvability of the multiple interpolation problem by simple partial fractions”, Siberian Math. J., 55:4 (2014), 611–621 | DOI | MR | Zbl

[23] N. Bakhvalov, Méthodes numériques. Analyse, algèbre, équations différentielles ordinaires, Éditions Mir, Moscow, 1976, 606 pp. | MR | MR | Zbl | Zbl

[24] A. I. Kostrikin, Vvedenie v algebru, Ch. 1: Osnovy algebry, Fizmatlit, M., 2000, 271 pp. | MR | Zbl