Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_2_a8, author = {Kh. A. Khachatryan}, title = {Positive solubility of some classes of non-linear integral equations}, journal = {Izvestiya. Mathematics }, pages = {411--430}, publisher = {mathdoc}, volume = {79}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a8/} }
Kh. A. Khachatryan. Positive solubility of some classes of non-linear integral equations. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 411-430. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a8/
[1] N. B. Engibaryan, “Ob odnoi zadache nelineinogo perenosa izlucheniya”, Astrofizika, 2:1 (1966), 31–36
[2] M. N. Kogan, Dinamika razrezhennogo gaza, Nauka, M., 1967, 440 pp. | Zbl
[3] N. B. Engibaryan, A. Kh. Khachatryan, “Exact linearization of the sliding problem for a dilute gas in the Bhatnagar–Gross–Krook model”, Theoret. and Math. Phys., 125:2 (2000), 1589–1592 | DOI | DOI | MR | Zbl
[4] A. Kh. Khachatryan, Kh. A. Khachatryan, “Qualitative difference between solutions for a model of the Boltzmann equation in the linear and nonlinear cases”, Theoret. and Math. Phys., 172:3 (2012), 1315–1320 | DOI | DOI | MR | Zbl
[5] Li Kun, Li Xiong, “Asymptotic behavior and uniquness of traveling wave solutions in Richer competition system”, J. Math. Anal. Appl., 389:1 (2012), 486–497 | DOI | MR | Zbl
[6] A. Hammerstein, “Nichtlineare Integralgleichungen nebst Anwendungen”, Acta. Math., 54:1 (1930), 117–176 | DOI | MR | Zbl
[7] P. Uryson, “Ob odnom tipe nelineinykh integralnykh uravnenii”, Matem. sb., 31:2 (1923), 236–255 | Zbl
[8] M. A. Krasnoselskii, L. A. Ladyzhenskii, “Usloviya polnoi nepreryvnosti operatora P. S. Urysona, deistvuyuschego v prostranstve $L^p$”, Tr. MMO, 3, GITTL, M., 1954, 307–320 | MR | Zbl
[9] V. Ya. Stetsenko, A. R. Esayan, “Teoremy o polozhitelnykh resheniyakh uravnenii vtorogo roda s nelineinymi operatorami”, Matem. sb., 68(110):4 (1965), 473–486 | MR | Zbl
[10] P. P. Zabreiko, M. A. Krasnosel'skii, “Solvability of nonlinear operator equations”, Funct. Anal. Appl., 5:3 (1971), 206–208 | DOI | MR | Zbl
[11] M. A. Krasnoselskii, Ya. B. Rutitskii, “Prostranstva Orlicha i nelineinye integralnye uravneniya”, Tr. MMO, 7, GIFML, M., 1958, 63–120 | MR | Zbl
[12] P. P. Zabreiko, E. I. Pustylnik, “O nepreryvnosti i polnoi nepreryvnosti nelineinykh integralnykh operatorov v prostranstvakh $L_p$”, UMN, 19:2(116) (1964), 204–205
[13] F. E. Browder, “Strongly nonlinear integral equations of Hammerstein type”, Proc. Nat. Acad. Sci. U.S.A., 72:5 (1975), 1937–1939 | DOI | MR | Zbl
[14] H. Brézis, F. E. Browder, “Some new results about Hammerstein equations”, Bull. Amer. Math. Soc., 80:3 (1974), 567–572 | DOI | MR | Zbl
[15] J. Banas, “Integrable solutions of Hammerstein and Urysohn integral equations”, J. Austral. Math. Soc. Ser. A, 46:1 (1989), 61–68 | DOI | MR | Zbl
[16] L. G. Arabadzhyan, “Existence of nontrivial solutions of certain linear and nonlinear convolution-type equations”, Ukrainian Math. J., 41:12 (1989), 1359–1367 | DOI | MR | Zbl
[17] Kh. A. Khachatryan, “One-parameter family of solutions for one class of Hammerstein nonlinear equations on a half-line”, Dokl. Math., 80:3 (2009), 872–876 | DOI | MR | Zbl
[18] Kh. A. Khachatryan, “On a class of nonlinear integral equations with a noncompact operator”, J. Contemp. Math. Anal., 46:2 (2011), 89–100 | DOI | MR | Zbl
[19] Kh. A. Khachatryan, “On a class of integral equations of Urysohn type with strong non-linearity”, Izv. Math., 76:1 (2012), 163–189 | DOI | DOI | MR | Zbl
[20] Kh. A. Khachatryan, “Sufficient conditions for the solvability of the Urysohn integral equation on a half-line”, Dokl. Math., 79:2 (2009), 246–249 | DOI | MR | Zbl
[21] A. Kh. Khachatryan, Kh. A. Khachatryan, “Existence and uniqueness theorem for a Hammerstein nonlinear integral equation”, Opuscula Math., 31:3 (2011), 393–398 | DOI | MR | Zbl
[22] Kh. A. Khachatryan, “Nekotorye klassy nelineinykh integralnykh uravnenii Urysona na poluosi”, Dokl. NAN Belarusi, 55:1 (2011), 5–9 | MR | Zbl
[23] V. S. Vladimirov, “The equation of the $p$-adic open string for the scalar tachyon field”, Izv. Math., 69:3 (2005), 487–512 | DOI | DOI | MR | Zbl
[24] V. S. Vladimirov, Ya. I. Volovich, “Nonlinear dynamics equation in $p$-adic string theory”, Theoret. and Math. Phys., 138:3 (2004), 297–309 | DOI | DOI | MR | Zbl
[25] I. Ya. Arefeva, I. V. Volovich, “O nelokalnykh kosmologicheskikh uravneniyakh na poluosi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 16–27 | DOI
[26] V. S. Vladimirov, “The equation of $p$-adic closed strings for the scalar tachyon field”, Sci. China Ser. A, 51:4 (2008), 754–764 | DOI | MR | Zbl
[27] L. G. Arabadzhyan, A. S. Khachatryan, “A class of integral equations of convolution type”, Sb. Math., 198:7 (2007), 949–966 | DOI | DOI | MR | Zbl
[28] L. G. Arabadzhyan, N. B. Engibaryan, “Convolution equations and nonlinear functional equations”, J. Soviet Math., 36:6 (1987), 745–791 | DOI | MR | Zbl
[29] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973, xiii+397 pp. | MR | MR | Zbl
[30] N. B. Yengibarian, “Renewal equation on the whole line”, Stochastic Process. Appl., 85:2 (2000), 237–247 | DOI | MR | Zbl