The spectral theory of a~functional-difference operator in conformal field theory
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 388-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the functional-difference operator $H=U+U^{-1}+V$, where $U$ and $V$ are the Weyl self-adjoint operators satisfying the relation $UV=q^{2}VU$, $q=e^{\pi i\tau}$, $\tau>0$. The operator $H$ has applications in the conformal field theory and representation theory of quantum groups. Using the modular quantum dilogarithm (a $q$-deformation of the Euler dilogarithm), we define the scattering solution and Jost solutions, derive an explicit formula for the resolvent of the self-adjoint operator $H$ on the Hilbert space $L^{2}(\mathbb R)$, and prove the eigenfunction expansion theorem. This theorem is a $q$-deformation of the well-known Kontorovich–Lebedev transform in the theory of special functions. We also present a formulation of the scattering theory for $H$.
Keywords: modular quantum dilogarithm, Weyl operators,functional-difference operator, Schrödinger operator, Sokhotski–Plemelj formula, scattering solution, resolvent of an operator, eigenfunction expansion, Kontorovich–Lebedev transform, scattering theory, scattering operator.
Mots-clés : Fourier transform, Casorati determinant, Jost solutions
@article{IM2_2015_79_2_a7,
     author = {L. A. Takhtadzhyan and L. D. Faddeev},
     title = {The spectral theory of a~functional-difference operator in conformal field theory},
     journal = {Izvestiya. Mathematics },
     pages = {388--410},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/}
}
TY  - JOUR
AU  - L. A. Takhtadzhyan
AU  - L. D. Faddeev
TI  - The spectral theory of a~functional-difference operator in conformal field theory
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 388
EP  - 410
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/
LA  - en
ID  - IM2_2015_79_2_a7
ER  - 
%0 Journal Article
%A L. A. Takhtadzhyan
%A L. D. Faddeev
%T The spectral theory of a~functional-difference operator in conformal field theory
%J Izvestiya. Mathematics 
%D 2015
%P 388-410
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/
%G en
%F IM2_2015_79_2_a7
L. A. Takhtadzhyan; L. D. Faddeev. The spectral theory of a~functional-difference operator in conformal field theory. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 388-410. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/

[1] L. D. Faddeyev, B. Seckler, “The inverse problem in the quantum theory of scattering”, J. Math. Phys., 4 (1963), 72–104 | DOI | MR | MR | Zbl | Zbl

[2] L. D. Faddeev, “Inverse problem of quantum scattering theory. II”, J. Soviet Math., 5:3 (1976), 334–396 | DOI | MR | Zbl

[3] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[4] L. D. Faddeev, L. A. Takhtajan, “Liouville model on the lattice”, Field theory, quantum gravity and strings ({M}eudon/{P}aris, 1984/1985), Lecture Notes in Phys., 246, Springer, Berlin, 1986, 166–179 | DOI | MR

[5] V. V. Fock, L. O. Chekhov, “A quantum Teichmüller space”, Theoret. and Math. Phys., 120:3 (1999), 1245–1259 | DOI | DOI | MR | Zbl

[6] R. Kashaev, “The quantum dilogarithm and {D}ehn twists in quantum {T}eichmüller theory”, Integrable structures of exactly solvable two-dimensional models of quantum field theory ({K}iev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 211–221 | MR | Zbl

[7] B. Ponsot, J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of $\mathscr U_{q}(\mathfrak{sl}(2,\mathbb R))$”, Comm. Math. Phys., 224:3 (2001), 613–655 | DOI | MR | Zbl

[8] S. E. Derkachov, L. D. Faddeev, $3j$-symbol for the modular double of $\mathrm{SL}_{q}(2,\mathbb R)$ revisited, arXiv: 1302.5400

[9] L. A. Takhtajan, Quantum mechanics for mathematicians, Grad. Stud. Math., 95, Amer. Math. Soc., Providence, RI, 2008, xvi+387 pp. | MR | Zbl

[10] A. Zamolodchikov, Al. Zamolodchikov, “Conformal bootstrap in Liouville field theory”, Nuclear Phys. B, 477:2 (1996), 577–605 | DOI | MR | Zbl

[11] L. D. Faddeev, “Modular double of a quantum group”, Conférence Moshé Flato 1999 (Dijon), v. I, Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000, 149–156 | MR | Zbl

[12] T. Shintani, “On a Kronecker limit formula for real quadratic field”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24:1 (1977), 167–199 | MR | Zbl

[13] N. Kurokawa, “Multiple sine functions and Selberg zeta functions”, Proc. Japan Acad. Ser. A Math. Sci., 67:3 (1991), 61–64 | DOI | MR | Zbl

[14] S. N. M. Ruijsenaars, “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38:2 (1997), 1069–1146 | DOI | MR | Zbl

[15] A. B. Zamolodchikov, Al. B. Zamolodchikov, “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Physics, 120:2 (1979), 253–291 | DOI | MR

[16] F. A. Smirnov, Form factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys., 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1992, xiv+208 pp. | MR | Zbl

[17] E. W. Barnes, “The genesis of the double gamma function”, Proc. London Math. Soc., S1-31:1 (1899), 358–381 | DOI | MR | Zbl

[18] V. P. Alekseevskii, “O funktsiyakh podobnykh funktsii gamma”, Soobscheniya i protokoly zasedanii Matematicheskogo obschestva pri Imperatorskom Kharkovskom universitete, v. 1, Kharkov, 1889, 169–238

[19] A. Yu. Volkov, “Noncommutative hypergeometry”, Comm. Math. Phys., 258:2 (2005), 257–273 | DOI | MR | Zbl

[20] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. II, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl

[21] N. I. Achieser, I. M. Glasman, Theorie der linearen Operatoren im Hilbert-Raum, Math. Lehrbucher und Monogr., IV, Akademie-Verlag, Berlin, 1968, xvi+488 pp. | MR | MR | Zbl | Zbl

[22] N. Dunford, J. T. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley Sons, New York–London, 1963, ix+859–1923+7 pp. | MR | MR | Zbl | Zbl

[23] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of integral transforms, Based, in part, on notes left by H. Bateman, v. II, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1954, xvi+451 pp. | MR | Zbl | Zbl

[24] L. D. Faddeev, Zero modes for the quantum Liouville model, arXiv: 1404.1713