The spectral theory of a~functional-difference operator in conformal field theory
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 388-410

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the functional-difference operator $H=U+U^{-1}+V$, where $U$ and $V$ are the Weyl self-adjoint operators satisfying the relation $UV=q^{2}VU$, $q=e^{\pi i\tau}$, $\tau>0$. The operator $H$ has applications in the conformal field theory and representation theory of quantum groups. Using the modular quantum dilogarithm (a $q$-deformation of the Euler dilogarithm), we define the scattering solution and Jost solutions, derive an explicit formula for the resolvent of the self-adjoint operator $H$ on the Hilbert space $L^{2}(\mathbb R)$, and prove the eigenfunction expansion theorem. This theorem is a $q$-deformation of the well-known Kontorovich–Lebedev transform in the theory of special functions. We also present a formulation of the scattering theory for $H$.
Keywords: modular quantum dilogarithm, Weyl operators,functional-difference operator, Schrödinger operator, Sokhotski–Plemelj formula, scattering solution, resolvent of an operator, eigenfunction expansion, Kontorovich–Lebedev transform, scattering theory, scattering operator.
Mots-clés : Fourier transform, Casorati determinant, Jost solutions
@article{IM2_2015_79_2_a7,
     author = {L. A. Takhtadzhyan and L. D. Faddeev},
     title = {The spectral theory of a~functional-difference operator in conformal field theory},
     journal = {Izvestiya. Mathematics },
     pages = {388--410},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/}
}
TY  - JOUR
AU  - L. A. Takhtadzhyan
AU  - L. D. Faddeev
TI  - The spectral theory of a~functional-difference operator in conformal field theory
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 388
EP  - 410
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/
LA  - en
ID  - IM2_2015_79_2_a7
ER  - 
%0 Journal Article
%A L. A. Takhtadzhyan
%A L. D. Faddeev
%T The spectral theory of a~functional-difference operator in conformal field theory
%J Izvestiya. Mathematics 
%D 2015
%P 388-410
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/
%G en
%F IM2_2015_79_2_a7
L. A. Takhtadzhyan; L. D. Faddeev. The spectral theory of a~functional-difference operator in conformal field theory. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 388-410. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/