Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_2_a7, author = {L. A. Takhtadzhyan and L. D. Faddeev}, title = {The spectral theory of a~functional-difference operator in conformal field theory}, journal = {Izvestiya. Mathematics }, pages = {388--410}, publisher = {mathdoc}, volume = {79}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/} }
TY - JOUR AU - L. A. Takhtadzhyan AU - L. D. Faddeev TI - The spectral theory of a~functional-difference operator in conformal field theory JO - Izvestiya. Mathematics PY - 2015 SP - 388 EP - 410 VL - 79 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/ LA - en ID - IM2_2015_79_2_a7 ER -
L. A. Takhtadzhyan; L. D. Faddeev. The spectral theory of a~functional-difference operator in conformal field theory. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 388-410. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a7/
[1] L. D. Faddeyev, B. Seckler, “The inverse problem in the quantum theory of scattering”, J. Math. Phys., 4 (1963), 72–104 | DOI | MR | MR | Zbl | Zbl
[2] L. D. Faddeev, “Inverse problem of quantum scattering theory. II”, J. Soviet Math., 5:3 (1976), 334–396 | DOI | MR | Zbl
[3] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl
[4] L. D. Faddeev, L. A. Takhtajan, “Liouville model on the lattice”, Field theory, quantum gravity and strings ({M}eudon/{P}aris, 1984/1985), Lecture Notes in Phys., 246, Springer, Berlin, 1986, 166–179 | DOI | MR
[5] V. V. Fock, L. O. Chekhov, “A quantum Teichmüller space”, Theoret. and Math. Phys., 120:3 (1999), 1245–1259 | DOI | DOI | MR | Zbl
[6] R. Kashaev, “The quantum dilogarithm and {D}ehn twists in quantum {T}eichmüller theory”, Integrable structures of exactly solvable two-dimensional models of quantum field theory ({K}iev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 211–221 | MR | Zbl
[7] B. Ponsot, J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of $\mathscr U_{q}(\mathfrak{sl}(2,\mathbb R))$”, Comm. Math. Phys., 224:3 (2001), 613–655 | DOI | MR | Zbl
[8] S. E. Derkachov, L. D. Faddeev, $3j$-symbol for the modular double of $\mathrm{SL}_{q}(2,\mathbb R)$ revisited, arXiv: 1302.5400
[9] L. A. Takhtajan, Quantum mechanics for mathematicians, Grad. Stud. Math., 95, Amer. Math. Soc., Providence, RI, 2008, xvi+387 pp. | MR | Zbl
[10] A. Zamolodchikov, Al. Zamolodchikov, “Conformal bootstrap in Liouville field theory”, Nuclear Phys. B, 477:2 (1996), 577–605 | DOI | MR | Zbl
[11] L. D. Faddeev, “Modular double of a quantum group”, Conférence Moshé Flato 1999 (Dijon), v. I, Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000, 149–156 | MR | Zbl
[12] T. Shintani, “On a Kronecker limit formula for real quadratic field”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24:1 (1977), 167–199 | MR | Zbl
[13] N. Kurokawa, “Multiple sine functions and Selberg zeta functions”, Proc. Japan Acad. Ser. A Math. Sci., 67:3 (1991), 61–64 | DOI | MR | Zbl
[14] S. N. M. Ruijsenaars, “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38:2 (1997), 1069–1146 | DOI | MR | Zbl
[15] A. B. Zamolodchikov, Al. B. Zamolodchikov, “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Physics, 120:2 (1979), 253–291 | DOI | MR
[16] F. A. Smirnov, Form factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys., 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1992, xiv+208 pp. | MR | Zbl
[17] E. W. Barnes, “The genesis of the double gamma function”, Proc. London Math. Soc., S1-31:1 (1899), 358–381 | DOI | MR | Zbl
[18] V. P. Alekseevskii, “O funktsiyakh podobnykh funktsii gamma”, Soobscheniya i protokoly zasedanii Matematicheskogo obschestva pri Imperatorskom Kharkovskom universitete, v. 1, Kharkov, 1889, 169–238
[19] A. Yu. Volkov, “Noncommutative hypergeometry”, Comm. Math. Phys., 258:2 (2005), 257–273 | DOI | MR | Zbl
[20] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. II, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl
[21] N. I. Achieser, I. M. Glasman, Theorie der linearen Operatoren im Hilbert-Raum, Math. Lehrbucher und Monogr., IV, Akademie-Verlag, Berlin, 1968, xvi+488 pp. | MR | MR | Zbl | Zbl
[22] N. Dunford, J. T. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley Sons, New York–London, 1963, ix+859–1923+7 pp. | MR | MR | Zbl | Zbl
[23] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of integral transforms, Based, in part, on notes left by H. Bateman, v. II, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1954, xvi+451 pp. | MR | Zbl | Zbl
[24] L. D. Faddeev, Zero modes for the quantum Liouville model, arXiv: 1404.1713