The dissipative property of a~cubic non-linear Schr\"odinger equation
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 346-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the large-time behaviour of solutions of the Cauchy problem for a non-linear Schrödinger equation. We consider the interaction between the resonance term and other types of non-linearity. We prove that solutions exist globally in time and find a large-time asymptotic representation for them. We show that the decay of solutions in the far region has the same order as in the linear case, while the solutions in the short-range region acquire an additional logarithmic decay, which is slower than in the case when there is no resonance term in the original equation.
Keywords: Schrödinger equation, cubic non-linearity, large-time asymptotics.
@article{IM2_2015_79_2_a5,
     author = {P. I. Naumkin},
     title = {The dissipative property of a~cubic non-linear {Schr\"odinger} equation},
     journal = {Izvestiya. Mathematics },
     pages = {346--374},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/}
}
TY  - JOUR
AU  - P. I. Naumkin
TI  - The dissipative property of a~cubic non-linear Schr\"odinger equation
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 346
EP  - 374
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/
LA  - en
ID  - IM2_2015_79_2_a5
ER  - 
%0 Journal Article
%A P. I. Naumkin
%T The dissipative property of a~cubic non-linear Schr\"odinger equation
%J Izvestiya. Mathematics 
%D 2015
%P 346-374
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/
%G en
%F IM2_2015_79_2_a5
P. I. Naumkin. The dissipative property of a~cubic non-linear Schr\"odinger equation. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 346-374. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/

[1] M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, SIAM Stud. Appl. Math., 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981, x+425 pp. | MR | MR | Zbl | Zbl

[2] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1984, xi+276 pp. | MR | MR | Zbl | Zbl

[3] J. E. Barab, “Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation”, J. Math. Phys., 25:11 (1984), 3270–3273 | DOI | MR | Zbl

[4] T. Ozawa, “Long range scattering for nonlinear Schrödinger equations in one space dimension”, Comm. Math. Phys., 139:3 (1991), 479–493 | DOI | MR | Zbl

[5] P. I. Naumkin, “Solution asymptotics at large times for the non-linear Schrödinger equation”, Izv. Math., 61:4 (1997), 757–794 | DOI | DOI | MR | Zbl

[6] N. Hayashi, P. I. Naumkin, “Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations”, Amer. J. Math., 120:2 (1998), 369–389 | DOI | MR | Zbl

[7] Th. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math., 10, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003, xiv+323 pp. | MR | Zbl

[8] N. Hayashi, T. Ozawa, “Modified wave operators for the derivative nonlinear Schrödinger equation”, Math. Ann., 298:3 (1994), 557–576 | DOI | MR | Zbl

[9] S. Katayama, Y. Tsutsumi, “Global existence of solutions for nonlinear Schrödinger equations in one space dimension”, Comm. Partial Differential Equations, 19:11-12 (1994), 1971–1997 | DOI | MR | Zbl

[10] Y. Tsutsumi, “The null gauge condition and the one dimensional nonlinear Schrödinger equation with cubic nonlinearity”, Indiana Univ. Math. J., 44:1 (1994), 241–254 | DOI | MR | Zbl

[11] T. Ozawa, “On the nonlinear Schrödinger equations of derivative type”, Indiana Univ. Math. J., 45:1 (1996), 137–163 | DOI | MR | Zbl

[12] P. I. Naumkin, “Cubic derivative nonlinear Schrödinger equations”, SUT J. Math., 36:1 (2000), 9–42 | MR | Zbl

[13] S. Tonegawa, “Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension”, Hokkaido Math. J., 30:2 (2001), 451–473 | DOI | MR | Zbl

[14] N. Hayashi, P. I. Naumkin, “Asymptotics of small solutions to nonlinear Schrödinger equations with cubic nonlinearities”, Int. J. Pure Appl. Math., 3:3 (2002), 255–273 | MR | Zbl

[15] N. Hayashi, P. I. Naumkin, “On the asymptotics for cubic nonlinear Schrödinger equations”, Complex Var. Theory Appl., 49:5 (2004), 339–373 | DOI | MR | Zbl

[16] N. Hayashi, P. I. Naumkin, “Nongauge invariant cubic nonlinear Schrödinger equations”, Pac. J. Appl. Math., 1:1 (2008), 1–16 | MR | Zbl

[17] P. I. Naumkin, I. Sánchez-Suárez, “On the critical nongauge invariant nonlinear Schrödinger equation”, Discrete Contin. Dyn. Syst., 30:3 (2011), 807–834 | DOI | MR | Zbl

[18] N. Hayashi, P. I. Naumkin, “Global existence for the cubic nonlinear Schrödinger equation in low order Sobolev spaces”, Differential Integral Equations, 24:9-10 (2011), 801–828 | MR | Zbl

[19] N. Hayashi, P. I. Naumkin, “Asymptotics of odd solutions for cubic nonlinear Schrödinger equations”, J. Differential Equations, 246:4 (2009), 1703–1722 | DOI | MR | Zbl

[20] N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^{2}(\mathbb R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 48:1 (1988), 17–37 | MR | Zbl

[21] J. Shatah, “Normal forms and quadratic nonlinear Klein–Gordon equations”, Commun. Pure Appl. Math., 38:5 (1985), 685–696 | DOI | MR | Zbl