The dissipative property of a~cubic non-linear Schr\"odinger equation
Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 346-374

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the large-time behaviour of solutions of the Cauchy problem for a non-linear Schrödinger equation. We consider the interaction between the resonance term and other types of non-linearity. We prove that solutions exist globally in time and find a large-time asymptotic representation for them. We show that the decay of solutions in the far region has the same order as in the linear case, while the solutions in the short-range region acquire an additional logarithmic decay, which is slower than in the case when there is no resonance term in the original equation.
Keywords: Schrödinger equation, cubic non-linearity, large-time asymptotics.
@article{IM2_2015_79_2_a5,
     author = {P. I. Naumkin},
     title = {The dissipative property of a~cubic non-linear {Schr\"odinger} equation},
     journal = {Izvestiya. Mathematics },
     pages = {346--374},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/}
}
TY  - JOUR
AU  - P. I. Naumkin
TI  - The dissipative property of a~cubic non-linear Schr\"odinger equation
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 346
EP  - 374
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/
LA  - en
ID  - IM2_2015_79_2_a5
ER  - 
%0 Journal Article
%A P. I. Naumkin
%T The dissipative property of a~cubic non-linear Schr\"odinger equation
%J Izvestiya. Mathematics 
%D 2015
%P 346-374
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/
%G en
%F IM2_2015_79_2_a5
P. I. Naumkin. The dissipative property of a~cubic non-linear Schr\"odinger equation. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 346-374. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/