Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_2_a5, author = {P. I. Naumkin}, title = {The dissipative property of a~cubic non-linear {Schr\"odinger} equation}, journal = {Izvestiya. Mathematics }, pages = {346--374}, publisher = {mathdoc}, volume = {79}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/} }
P. I. Naumkin. The dissipative property of a~cubic non-linear Schr\"odinger equation. Izvestiya. Mathematics , Tome 79 (2015) no. 2, pp. 346-374. http://geodesic.mathdoc.fr/item/IM2_2015_79_2_a5/
[1] M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, SIAM Stud. Appl. Math., 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981, x+425 pp. | MR | MR | Zbl | Zbl
[2] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1984, xi+276 pp. | MR | MR | Zbl | Zbl
[3] J. E. Barab, “Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation”, J. Math. Phys., 25:11 (1984), 3270–3273 | DOI | MR | Zbl
[4] T. Ozawa, “Long range scattering for nonlinear Schrödinger equations in one space dimension”, Comm. Math. Phys., 139:3 (1991), 479–493 | DOI | MR | Zbl
[5] P. I. Naumkin, “Solution asymptotics at large times for the non-linear Schrödinger equation”, Izv. Math., 61:4 (1997), 757–794 | DOI | DOI | MR | Zbl
[6] N. Hayashi, P. I. Naumkin, “Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations”, Amer. J. Math., 120:2 (1998), 369–389 | DOI | MR | Zbl
[7] Th. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math., 10, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003, xiv+323 pp. | MR | Zbl
[8] N. Hayashi, T. Ozawa, “Modified wave operators for the derivative nonlinear Schrödinger equation”, Math. Ann., 298:3 (1994), 557–576 | DOI | MR | Zbl
[9] S. Katayama, Y. Tsutsumi, “Global existence of solutions for nonlinear Schrödinger equations in one space dimension”, Comm. Partial Differential Equations, 19:11-12 (1994), 1971–1997 | DOI | MR | Zbl
[10] Y. Tsutsumi, “The null gauge condition and the one dimensional nonlinear Schrödinger equation with cubic nonlinearity”, Indiana Univ. Math. J., 44:1 (1994), 241–254 | DOI | MR | Zbl
[11] T. Ozawa, “On the nonlinear Schrödinger equations of derivative type”, Indiana Univ. Math. J., 45:1 (1996), 137–163 | DOI | MR | Zbl
[12] P. I. Naumkin, “Cubic derivative nonlinear Schrödinger equations”, SUT J. Math., 36:1 (2000), 9–42 | MR | Zbl
[13] S. Tonegawa, “Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension”, Hokkaido Math. J., 30:2 (2001), 451–473 | DOI | MR | Zbl
[14] N. Hayashi, P. I. Naumkin, “Asymptotics of small solutions to nonlinear Schrödinger equations with cubic nonlinearities”, Int. J. Pure Appl. Math., 3:3 (2002), 255–273 | MR | Zbl
[15] N. Hayashi, P. I. Naumkin, “On the asymptotics for cubic nonlinear Schrödinger equations”, Complex Var. Theory Appl., 49:5 (2004), 339–373 | DOI | MR | Zbl
[16] N. Hayashi, P. I. Naumkin, “Nongauge invariant cubic nonlinear Schrödinger equations”, Pac. J. Appl. Math., 1:1 (2008), 1–16 | MR | Zbl
[17] P. I. Naumkin, I. Sánchez-Suárez, “On the critical nongauge invariant nonlinear Schrödinger equation”, Discrete Contin. Dyn. Syst., 30:3 (2011), 807–834 | DOI | MR | Zbl
[18] N. Hayashi, P. I. Naumkin, “Global existence for the cubic nonlinear Schrödinger equation in low order Sobolev spaces”, Differential Integral Equations, 24:9-10 (2011), 801–828 | MR | Zbl
[19] N. Hayashi, P. I. Naumkin, “Asymptotics of odd solutions for cubic nonlinear Schrödinger equations”, J. Differential Equations, 246:4 (2009), 1703–1722 | DOI | MR | Zbl
[20] N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^{2}(\mathbb R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 48:1 (1988), 17–37 | MR | Zbl
[21] J. Shatah, “Normal forms and quadratic nonlinear Klein–Gordon equations”, Commun. Pure Appl. Math., 38:5 (1985), 685–696 | DOI | MR | Zbl